
UPC++ Specification
v1.0 Draft 5

UPC++ Specification Working Group
upcxx-spec@googlegroups.com

January 29, 2018

mailto:upcxx-spec@googlegroups.com

UPC++ Specification v1.0 Draft 5

Abstract
UPC++ is a C++11 library providing classes and functions that support Asynchronous

Partitioned Global Address Space (APGAS) programming. We are revising the library
under the auspices of the DOE’s Exascale Computing Project, to meet the needs of ap-
plications requiring PGAS support. UPC++ is intended for implementing elaborate dis-
tributed data structures where communication is irregular or fine-grained. The UPC++
interfaces for moving non-contiguous data and handling memories with different optimal
access methods are composable and similar to those used in conventional C++. The
UPC++ programmer can expect communication to run at close to hardware speeds.

The key facilities in UPC++ are global pointers, that enable the programmer to express
ownership information for improving locality, one-sided communication, both put/get and
RPC, futures and continuations. Futures capture data readiness state, which is useful
in making scheduling decisions, and continuations provide for completion handling via
callbacks. Together, these enable the programmer to chain together a DAG of operations
to execute asynchronously as high-latency dependencies become satisfied.

Acknowledgments
This research was supported by the Exascale Computing Project (17-SC-20-SC), a

collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration

Early development of UPC++ was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Copyright
This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under

Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains,
and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.

Legal Disclaimer
This document was prepared as an account of work sponsored by the United States Government.

While this document is believed to contain correct information, neither the United States Government nor
any agency thereof, nor the Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof, or
the Regents of the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof or the Regents of
the University of California.

ii Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Contents

Contents iii

1 Overview and Scope 1
1.1 Preliminaries . 1
1.2 Execution Model . 3
1.3 Memory Model . 4
1.4 Organization of this Document . 4
1.5 Document Conventions . 4
1.6 Glossary . 5

2 Init and Finalize 8
2.1 Overview . 8
2.2 Hello World . 8
2.3 API Reference . 9

3 Global Pointers 11
3.1 Overview . 11
3.2 API Reference . 12

4 Storage Management 19
4.1 Overview . 19
4.2 API Reference . 19

5 Futures and Promises 23
5.1 Overview . 23
5.2 The Basics of Asynchronous Communication 23
5.3 Working with Promises . 25
5.4 Advanced Callbacks . 26
5.5 Execution Model . 28
5.6 Anonymous Dependencies . 30

iii

UPC++ Specification v1.0 Draft 5

5.7 Lifetime and Thread Safety . 31
5.8 API Reference . 32

5.8.1 future . 32
5.8.2 promise . 35

6 Serialization 38
6.1 Functions . 39

7 Completion 40
7.1 Overview . 40
7.2 Completion Objects . 42

7.2.1 Restrictions . 44
7.2.2 Completion and Return Types . 44
7.2.3 Default Completions . 45

7.3 API Reference . 45

8 One-Sided Communication 48
8.1 Overview . 48
8.2 API Reference . 48

8.2.1 Remote Puts . 48
8.2.2 Remote Gets . 50

9 Remote Procedure Call 52
9.1 Overview . 52
9.2 Remote Hello World Example . 53
9.3 API Reference . 53

10 Progress 57
10.1 Overview . 57
10.2 Restricted Context . 58
10.3 Attentiveness . 59
10.4 Thread Personas/Notification Affinity . 59
10.5 API Reference . 62

10.5.1 persona . 63
10.5.2 persona scope . 66
10.5.3 Outgoing Progress . 67

11 Atomics 68
11.1 Overview . 68
11.2 API Reference . 68

iv Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CONTENTS

12 Teams 71
12.1 Overview . 71
12.2 Local Teams . 71
12.3 API Reference . 72

12.3.1 team . 72
12.3.2 team id . 74
12.3.3 Fundamental Teams . 74
12.3.4 Collectives . 75

13 Distributed Objects 79
13.1 Overview . 79
13.2 Building Distributed Objects . 80
13.3 Ensuring Distributed Existence . 80
13.4 API Reference . 81

14 Non-Contiguous One-Sided Communication 84
14.1 Overview . 84
14.2 API Reference . 85

14.2.1 Requirements on Iterators . 85
14.2.2 Fragmented Put . 85
14.2.3 Fragmented Get . 87
14.2.4 Fragmented Regular Put . 88
14.2.5 Fragmented Regular Get . 90
14.2.6 Strided Put . 91
14.2.7 Strided Get . 92

15 Memory Kinds 95

A Notes for Implementers 96
A.1 future_element_t and future_element_moved_t 96
A.2 future<T...>::when_all . 97
A.3 to_future . 98
A.4 future_invoke_result_t . 98

Bibliography 99

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. v

Chapter 11

Overview and Scope2

1.1 Preliminaries3

UPC++ is a C++11 library providing classes and functions that support Asynchronous4

Partitioned Global Address Space (APGAS) programming. The project began in 20125

with a prototype AKA V0.1, described in the IPDPS14 paper by Zheng et al. [3]. This6

document describes a production version, V1.0, with the addition of several features and7

a new asynchronous API.8

Under the PGAS model, a distributed memory parallel computer is viewed abstractly9

as a collection of processing elements, an individual computing resource, each with local10

memory (see Fig. 1.1). A processing element is called a rank in UPC++. The execution11

model of UPC++ is SPMD and the number of UPC++ ranks is fixed during program execution.12

As with conventional C++ threads programming, ranks can access their respective13

local memory via a pointer. However, the PGAS abstraction supports a global address14

space, which is allocated in shared segments distributed over the ranks. A global pointer15

enables the programmer to move data in the shared segments between ranks as shown in16

Fig. 1.1. As with threads programming, references made via global pointers are subject to17

race conditions, and appropriate synchronization must be employed.18

UPC++ global pointers are fundamentally different from conventional C-style pointers. A19

global pointer refers to a location in a shared segment. It cannot be dereferenced using the20

? operator, and it does not support conversions between pointers to base and derived types.21

It also cannot be constructed by the address-of operator. On the other hand, UPC++ global22

pointers do support some properties of a regular C pointer, such as pointer arithmetic and23

passing a pointer by value.24

Notably, global pointers are used in one-sided communication: bulk copying operations25

(RMA) similar to memcpy but across ranks (Ch. 8), and in Remote Procedure Calls26

1

UPC++ Specification v1.0 Draft 5

Figure 1.1: Abstract Machine Model of a PGAS program memory

(RPC, Ch. 9). RPC enables the programmer to ship functions to other ranks, which is1

useful in managing irregular distributed data structures. These ranks can push or pull2

data via global pointers. Futures and Promises (Ch. 5) are used to determine completion3

of communication or to provide handlers that respond to completion. Wherever possible,4

UPC++ will engage low-level hardware support for communication and this capability is5

crucial to UPC++’s support of lightweight communication.6

UPC++’s design philosophy is to provide “close to the metal performance.” To meet this7

requirement, UPC++ imposes certain restrictions. In particular, non-blocking communica-8

tion is the default for nearly all operations defined in the API, and all communication is9

explicit. These two restrictions encourage the programmer to write code that is perfor-10

mant and make it more difficult to write code that is not. Conversely, UPC++ relaxes some11

restrictions found in models such as MPI; in particular, it does not impose an in-order12

delivery requirement between separate communication operations. The added flexibility13

increases the possibility of overlapping communication and scheduling it appropriately.14

UPC++ also avoids non-scalable constructs found in models such as UPC. For example,15

it does not support shared distributed arrays or shared scalars. Instead, it provides dis-16

tributed objects, which can be used to similar ends (Ch. 13). Distributed objects are useful17

in solving the bootstrapping problem, whereby ranks need to distribute their local copies18

of global pointers to other ranks. Though UPC++ does not directly provide multidimen-19

sional arrays, applications that use UPC++ may define them. To this end, UPC++ supports20

non-contiguous data transfers: vector, indexed, and strided data (Ch. 14).21

Because UPC++ does not provide separate concurrent threads to manage progress, UPC++22

must manage all progress inside active calls to the library. UPC++ has been designed with a23

policy against the use of internal operating system threads. The strengths of this approach24

are improved user-visibility into the resource requirements of UPC++ and better interoper-25

ability with software packages and their possibly restrictive threading requirements. The26

consequence, however, is that the user must be conscientious to balance the need for mak-27

ing progress against the application’s need for CPU cycles. Chapter 10 discusses subtleties28

2 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 1. OVERVIEW AND SCOPE

of managing progress and how an application can arrange for UPC++ to advance the state1

of asynchronous communication.2

Ranks may be grouped into teams (Ch. 12). A team can participate in collective3

operations. Teams are also the interface that UPC++ uses to propagate the shared memory4

capabilities of the underlying hardware and operating system and can let a programmer5

reason about hierarchical processor-memory organization, allowing an application to reduce6

its memory footprint. UPC++ supports atomic operations, currently on remote 32-bit and7

64-bit integers. Atomics are useful in managing distributed queues, hash tables, and so8

on. However, as explained in the discussion below on UPC++’s memory model, atomics are9

split phased and not handled the same way as they are in C++11 and other libraries.10

UPC++ will support memory kinds (Ch. 15), whereby the programmer can identify re-11

gions of memory requiring different access methods or having different performance prop-12

erties, such as device memory. Since memory kinds will be implemented in Year 2, we will13

defer their detailed discussion until next year.14

1.2 Execution Model15

The UPC++ internal state contains, for each rank, internal unordered queues that are man-16

aged for the user. The UPC++ progress engine scans these queues for operations initiated by17

this rank, as well as externally generated operations that target this rank. The progress en-18

gine is active inside UPC++ calls only and is quiescent at other times, as there are no threads19

or background processes executing inside UPC++. This passive stance permits UPC++ to be20

driven by any other execution model a user might choose. This universality does place a21

small burden on the user: calling into the progress function. UPC++ relies on the user to22

make periodic calls into the progress function to ensure that UPC++ operations are com-23

pleted. progress is the mechanism by which the user loans UPC++ a thread of execution24

to perform operations that target the given rank. The user can determine that a specific25

operation completes by checking the status of its associated future, or by attaching a26

completion handler to the operation.27

UPC++ presents a thread-aware programming model. It assumes that only one thread28

of execution is interacting with any UPC++ object. The abstraction for thread-awareness29

in UPC++ is the persona. A future produced by a thread of execution is associated with30

its persona, and transferring the future to another thread must be accompanied by trans-31

ferring the underlying persona. Each rank has a master persona, initially attached to the32

thread that calls init. Some UPC++ operations, such as barrier, require a thread to have33

exclusive access to the master persona to call them. Thus, the programmer is responsible34

for ensuring synchronized access to both personas and memory, and that access to shared35

data does not interfere with the internal operation of UPC++.36

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 3

UPC++ Specification v1.0 Draft 5

1.3 Memory Model1

The UPC++ memory model differs from that of C++11 (and beyond) in that all updates2

are split-phased: every communication operation has a distinct initiate and wait step.3

Thus, atomic operations execute over a time interval, and the time intervals of successive4

operations that target the same datum must not overlap, or a data race will result.5

UPC++ differs from MPI in that it doesn’t guarantee in-order delivery. For example, if6

we overlap two successive RPC operations involving the same source and destination rank,7

we cannot say which one completes first.8

1.4 Organization of this Document9

This specification is intended to be a normative reference - a Programmer’s Manual is10

forthcoming. For the purposes of understanding the key ideas in UPC++, we recommend11

that the novice reader skip Chapter 10 (Progress) and the advanced topics related to12

futures, personas, and continuation-based communication.13

The organization for the rest of the document is as follows. Chapter 2 discusses the14

process of starting up and closing down UPC++. Global pointers (Ch. 3) are fundamental15

to the PGAS model, and Chapter 4 discusses storage allocation. Since UPC++ supports16

asynchronous communication only, UPC++ provides futures and promises (Ch. 5) to manage17

control flow and completion. Chapters 8 and 9 describe the two forms of asynchronous one-18

sided communication, rput/rget and RPC, respectively. Chapter 10 discusses progress.19

Chapter 11 discusses atomic operations. Chapter 12 discusses teams, which are a means20

of organizing UPC++ ranks. Chapter 13 discusses distributed objects. Chapter 14 discusses21

non-contiguous data transfers. Chapter 15 discusses memory kinds.22

1.5 Document Conventions23

1. C++ language keywords are in the color mocha.24

2. UPC++ terms are set in the color bright blue except when they appear in a synopsis25

framebox.26

3. All functions are declared noexcept unless specifically called out.27

4. All entities are in the upcxx namespace unless otherwise qualified.28

4 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 1. OVERVIEW AND SCOPE

1.6 Glossary1

Affinity. A binding of each location in a shared segment to a particular rank (gener-2

ally the rank which allocated that shared object). Every byte of shared memory3

has affinity to exactly one rank (at least logically).4

C++ Concepts. E.g. TriviallyCopyable. This document references C++ Con-5

cepts as defined in the C++14 standard [2] when specifying the semantics of6

types. However, compliant implementations are still possible within a compiler7

adhering to the earlier C++11 standard [1].8

Collective. A constraint placed on some language operations which requires evalua-9

tion of such operations to be matched across all ranks. The behavior of collective10

operations is undefined unless all ranks execute the same sequence of collective11

operations.12

A collective operation need not provide any actual synchronization between13

ranks, unless otherwise noted. The collective requirement simply states a rela-14

tive ordering property of calls to collective operations that must be maintained15

in the parallel execution trace for all executions of any valid program. Some16

implementations may include unspecified synchronization between ranks within17

collective operations, but programs must not rely upon the presence or absence18

of such unspecified synchronization for correctness.19

Futures (and Promises) (5) The primary mechanisms by which a UPC++ appli-20

cation interacts with non-blocking operations. The semantics of futures and21

promises in UPC++ differ from the those of standard C++. While futures in22

C++ facilitate communicating between threads, the intent of UPC++ futures is23

solely to provide an interface for managing and composing non-blocking oper-24

ations, and they cannot be used directly to communicate between threads or25

ranks. A future is the interface through which the status of the operation can be26

queried and the results retrieved, and multiple future objects may be associated27

with the same promise. A future thus represents the consumer side of a non-28

blocking operation. A promise represents the producer side of the operation,29

and it is through the promise that the results of the operation are supplied and30

its dependencies fulfilled.31

Global pointer. (3) The primary way to address memory in a shared memory seg-32

ment of a UPC++ program. Global pointers can themselves be stored in shared33

memory or otherwise passed between ranks and retain their semantic meaning34

to any rank.35

Local. Refers to an object or reference with affinity to a rank in the local team36

(12.2).37

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 5

UPC++ Specification v1.0 Draft 5

Operation completion. (7) The condition where a communication operation is1

complete with respect to the initiating rank, such that its effects are visible and2

that resources, such as source and destination memory regions, are no longer in3

use by UPC++.4

Persona. (10.4) The abstraction for thread-awareness in UPC++. A UPC++ persona5

object represents a collection of UPC++-internal state usually attributed to a sin-6

gle thread. By making it a proper construct, UPC++ allows a single OS thread7

to switch between multiple application-defined roles for processing notifications.8

Personas act as the receivers for notifications generated by the UPC++ runtime.9

Private object. An object outside the shared space that can be accessed only by10

the rank that owns it (e.g. an object on the program stack).11

Progress. (10) The means by which the application allows the UPC++ runtime to12

advance the state of outstanding operations initiated by this or other ranks, to13

ensure they eventually complete.14

Rank. An OS process that is a member of a UPC++ parallel job execution. UPC+15

uses a SPMD execution model, and the number of ranks is fixed during a given16

program execution. The placement of ranks across physical processors or NUMA17

domains is implementation-dependent.18

Referentially transparent. A routine that is is a pure function, where inputs alone19

determine the value returned by the function. For the same inputs, repeated20

calls to a referentially transparent function will always return the same result.21

Remote. Refers to an object or reference whose affinity is not local to the current22

rank.23

Remote Procedure Call. A communication operation that injects a function call24

invocation into the execution stream of another rank. These injections are25

one-sided, meaning the target rank need not explicitly expect the incoming op-26

eration or perform any specific action to receive it, aside from invoking UPC++27

progress.28

Serializable. (6) A C++ object that is either TriviallyCopyable, or for which there29

is a user-supplied implementation of the visitor function serialize.30

Source completion. The condition where a communication operation initiated by31

the current rank has advanced to a point where serialization of the local source32

memory regions for the operation has occurred, and the contents of those re-33

gions can be safely overwritten or reclaimed without affecting the behavior of the34

ongoing operation. Source completion does not generally imply operation com-35

pletion, and other effects of the operation (e.g., updating destination memory36

regions, or delivery to a remote rank) may still be in-progress.37

6 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 1. OVERVIEW AND SCOPE

Shared segment. A region of storage associated with a particular rank that is used1

to allocate shared objects that are accessible by any rank.2

Team. A UPC++ object representing an ordered set of ranks.3

Thread (or OS thread). An independent stream of executing instructions with4

private state. A rank process may contain many threads (created by the appli-5

cation), and each is associated with at least one persona.6

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 7

Chapter 21

Init and Finalize2

2.1 Overview3

The init function must be called before any other UPC++ function can be invoked. This4

can happen anywhere in the program, so long as it appears before any UPC++ calls that5

require the library to be in an initialized state. The call is collective, meaning every process6

in the parallel job must enter this function if any are to participate in UPC++ operations.7

While init can be called more than once by each process in a program, only the first8

invocation will initialize UPC++, and the rest will merely increment the internal count of9

how many times init has been called. For each init call, a matching finalize call must10

eventually be made. init and finalize are not re-entrant and must be called by only11

a single thread of execution in each process. The thread that calls init has the master12

persona attached to it (see section 10.5.1 for more details of threading behavior). After the13

number of calls to finalize matches the number of calls to init, no UPC++ function that14

requires the library to be in an initialized state can be invoked until UPC++ is reinitialized15

by a subsequent call to init.16

All UPC++ operations require the library to be in an initialized state unless otherwise17

specified, and violating this requirement results in undefined behavior. Member functions,18

constructors, and destructors are included in the set of operations that require UPC++ to19

be initialized, unless explicitly stated otherwise.20

2.2 Hello World21

A UPC++ installation should be able to compile and execute the simple Hello World program22

shown in Figure 2.1. The output of Hello World, however, is platform-dependent and may23

vary between different runs, since there is no synchronization to order the output between24

processes. Depending on the nature of the buffering protocol of stdout, output from25

8

CHAPTER 2. INIT AND FINALIZE

include <upcxx/upcxx.hpp >1

include <iostream >2

int main(int argc , char *argv [])3

{4

upcxx :: init (); // initialize UPC ++5

6

std :: cout << "Hello World"7

<< " ranks:" << upcxx :: rank_n () // how many UPC ++ ranks?8

<< " my rank: " << upcxx :: rank_me () // which rank am I?9

<< std :: endl;10

11

upcxx :: finalize (); // finalize UPC ++12

return 0;13

}14

Figure 2.1: HelloWorld.cpp program

different processes may even be interleaved.1

2.3 API Reference2

void init ();3

Preconditions: Called collectively by all processes in the parallel job. Call-4

ing thread must have the master persona (§10.5.1) if UPC++ is in an already-5

initialized state.6

If there have been no previous calls to init, or if all previous calls to init have7

had matching calls to finalize, then this routine initializes the UPC++ library.8

Otherwise, leaves the library’s state as is. Upon return, the calling thread will9

be attached to the master persona (§10.5.1).10

This function may be called when UPC++ is in the uninitialized state.11

void finalize ();12

Preconditions: Called collectively by all processes in the parallel job. Call-13

ing thread must have the master persona (§10.5.1), and UPC++ must be in an14

already-initialized state.15

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 9

UPC++ Specification v1.0 Draft 5

If this call matches the call to init that placed UPC++ in an initialized state,1

then this call uninitializes the UPC++ library. Otherwise, this function does not2

alter the library’s state.3

If this call uninitializes the UPC++ library while there are any asynchronous4

operations still in-flight, behavior is undefined. An operation is defined as in-5

flight if it was initiated but still requires internal-level or user-level progress6

from any persona on any rank in the job before it can complete. It is left7

to the application to define and implement their own specific approach to en-8

suring quiescence of in-flight operations. A potential quiescence API is being9

considered for future versions and feedback is encouraged.10

10 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 31

Global Pointers2

3.1 Overview3

The UPC++ global ptr is the primary way to address memory in a remote shared memory4

segment of a UPC++ program. The next chapter discusses how memory in the shared5

segment is allocated to the user.6

As mentioned in Chapter 1, a global pointer is a handle that may not be dereferenced.7

This restriction follows from the design decision to prohibit implicit communication. Logi-8

cally, a global pointer has two parts: a raw C++ pointer and an associated affinity, which9

is a binding of each location in a shared segment to a particular rank (generally the rank10

which allocated that shared object). In cases where the use of a global ptr executes in11

a rank that has direct load/store access to the memory of the global ptr (i.e. is local12

is true), we may extract the raw pointer component, and benefit from the reduced cost13

of employing a local reference rather than a global one. To this end, UPC++ provides the14

local() function, which returns a raw C++ pointer. Calling local() on a global ptr15

that references an address in a remote shared segment results in undefined behavior.16

Global pointers have the following guarantees:17

1. A global_ptr<T> is only valid if it is the null global pointer, it references a valid18

object, or it represents one element past the end of a valid array or non-array object.19

2. Two global pointers compare equal if and only if they reference the same object, one20

past the end of the same array or non-array object, or are both null.21

3. Equality of global pointers corresponds to observational equality, meaning that two22

global pointers which compare equal will produce equivalent behavior when inter-23

changed.24

These facts become important given that UPC++ allows two ranks which are local to25

each other to map the same memory into their own virtual address spaces but possibly26

11

UPC++ Specification v1.0 Draft 5

with different virtual addresses. They also ensure that a global pointer can be viewed from1

any rank to mean the same thing without need for translation.2

3.2 API Reference3

using intrank_t = /* implementation - defined */;4

An implementation-defined signed integer type that represents a UPC++ rank5

ID.6

template < typename T>7

struct global_ptr ;8

C++ Concepts: DefaultConstructible, TriviallyCopyable, TriviallyDestructible,9

EqualityComparable, LessThanComparable, hashable10

T must not have any cv qualifiers: std::is_const<T>::value and11

std::is_volatile<T>::value must both be false.12

template < typename T>13

struct global_ptr {14

using element_type = T;15

// ...16

};17

Member type that is an alias for the template parameter T.18

template < typename T>19

global_ptr <T >:: global_ptr (T* ptr);20

Precondition: ptr must be either null or an address in the shared segment (Ch.21

4) of a rank in the local team (§12.2)22

Constructs a global pointer corresponding to the given raw pointer. This con-23

structor must be called explicitly.24

UPC++ progress level: none25

template < typename T>26

global_ptr <T >:: global_ptr (std :: nullptr_t = nullptr);27

12 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 3. GLOBAL POINTERS

Constructs a global pointer corresponding to a null pointer.1

This function may be called when UPC++ is in the uninitialized state.2

UPC++ progress level: none3

template < typename T>4

global_ptr <T >::˜ global_ptr ();5

Trivial destructor. Does not delete or otherwise reclaim the raw pointer that6

this global pointer is referencing.7

This function may be called when UPC++ is in the uninitialized state.8

UPC++ progress level: none9

template < typename T>10

bool global_ptr <T >:: is_local () const;11

Returns whether or not the calling rank has load/store access to the memory12

referenced by this pointer. Returns true if this is a null pointer, regardless of13

the context in which this query is called.14

UPC++ progress level: none15

template < typename T>16

bool global_ptr <T >:: is_null () const;17

Returns whether or not this global pointer corresponds to the null value, mean-18

ing that it references no memory. This query is purely a function of the global19

pointer instance, it is not affected by the context in which it is called.20

UPC++ progress level: none21

template < typename T>22

T* global_ptr <T >:: local () const;23

Precondition: this->is_local()24

Converts this global pointer into a raw pointer.25

UPC++ progress level: none26

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 13

UPC++ Specification v1.0 Draft 5

template < typename T>1

intrank_t global_ptr <T >:: where () const;2

Returns the rank in team world() with affinity to the T object pointed-to by3

this global pointer. The return value for where() on a null global pointer is4

an implementation-defined value. This query is purely a function of the global5

pointer instance, it is not affected by the context in which it is called.6

UPC++ progress level: none7

template < typename T>8

global_ptr <T> global_ptr <T >:: operator +(std :: ptrdiff_t diff) const;9

template < typename T>10

global_ptr <T> operator +(std :: ptrdiff_t diff , global_ptr <T> ptr);11

Precondition: Either diff == 0, or the global pointer is pointing to the ith12

element of an array of N elements, where i may be equal to N, representing a13

one-past-the-end pointer. At least one of the indices i+diff or i+diff-1 must14

be a valid element of the same array. A pointer to a non-array object is treated15

as a pointer to an array of size 1.16

If diff == 0, returns a copy of the global pointer. Otherwise produces a17

pointer that references the element that is at diff positions greater than the18

current element, or a one-past-the-end pointer if the last element of the array19

is at diff-1 positions greater than the current.20

These routines are purely functions of their arguments, they are not affected21

by the context in which they are called.22

UPC++ progress level: none23

template < typename T>24

global_ptr <T> global_ptr <T >:: operator -(std :: ptrdiff_t diff) const ;25

Precondition: Either diff == 0, or the global pointer is pointing to the ith26

element of an array of N elements, where i may be equal to N, representing a27

one-past-the-end pointer. At least one of the indices i-diff or i-diff-1 must28

be a valid element of the same array. A pointer to a non-array object is treated29

as a pointer to an array of size 1.30

If diff == 0, returns a copy of the global pointer. Otherwise produces a31

pointer that references the element that is at diff positions less than the32

14 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 3. GLOBAL POINTERS

current element, or a one-past-the-end pointer if the last element of the array1

is at diff+1 positions less than the current.2

This routine is purely a function of its arguments, it is not affected by the3

context in which they are called.4

UPC++ progress level: none5

template < typename T>6

std :: ptrdiff_t global_ptr <T >:: operator -(global_ptr <T> rhs) const;7

Precondition: Either *this == rhs, or this global pointer is pointing to the8

ith element of an array of N elements, and rhs is pointing at the jth element9

of the same array. Either pointer may also point one past the end of the array,10

so that i or j is equal to N. A pointer to a non-array object is treated as a11

pointer to an array of size 1.12

If *this == rhs, results in 0. Otherwise, returns i-j.13

This routine is purely a function of its arguments, it is not affected by the14

context in which it is called.15

UPC++ progress level: none16

template < typename T>17

global_ptr <T>& global_ptr <T >:: operator ++();18

Precondition: the global pointer must be pointing to an element of an array or19

to a non-array object20

Modifies this pointer to have the value *this + 1 and returns a reference to21

this pointer.22

This routine is purely a function of its instance, it is not affected by the context23

in which it is called.24

UPC++ progress level: none25

template < typename T>26

global_ptr <T> global_ptr <T >:: operator ++(int);27

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 15

UPC++ Specification v1.0 Draft 5

Precondition: the global pointer must be pointing to an element of an array or1

to a non-array object2

Modifies this pointer to have the value *this + 1 and returns a copy of the3

original pointer.4

This routine is purely a function of its instance, it is not affected by the context5

in which it is called.6

UPC++ progress level: none7

template < typename T>8

global_ptr <T>& global_ptr <T >:: operator - -();9

Precondition: the global pointer must either be pointing to the ith element of10

an array, where i >= 1, or one element past the end of an array or a non-array11

object12

Modifies this pointer to have the value *this - 1 and returns a reference to13

this pointer.14

This routine is purely a function of its instance, it is not affected by the context15

in which it is called.16

UPC++ progress level: none17

template < typename T>18

global_ptr <T> global_ptr <T >:: operator --(int);19

Precondition: the global pointer must either be pointing to the ith element of20

an array, where i >= 1, or one element past the end of an array or a non-array21

object22

Modifies this pointer to have the value *this - 1 and returns a copy of the23

original pointer.24

This routine is purely a function of its instance, it is not affected by the context25

in which it is called.26

UPC++ progress level: none27

template < typename T>28

bool global_ptr <T >:: operator ==(global_ptr <T> rhs) const;29

template < typename T>30

bool global_ptr <T >:: operator !=(global_ptr <T> rhs) const;31

16 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 3. GLOBAL POINTERS

template < typename T>1

bool global_ptr <T >:: operator <(global_ptr <T> rhs) const;2

template < typename T>3

bool global_ptr <T >:: operator <=(global_ptr <T> rhs) const;4

template < typename T>5

bool global_ptr <T >:: operator >(global_ptr <T> rhs) const;6

template < typename T>7

bool global_ptr <T >:: operator >=(global_ptr <T> rhs) const;8

Returns the result of comparing two global pointers. Two global pointers com-9

pare equal if they both represent null pointers, or if they represent the same10

memory address with affinity to the same rank. All other global pointers com-11

pare unequal.12

A pointer to a non-array object is treated as a pointer to an array of size13

one. If two global pointers point to different elements of the same array, or to14

subobjects of two different elements of the same array, then the pointer to the15

element at the higher index compares greater than the pointer to the element16

at the lower index. If one pointer points to an element of an array or to a17

subobject of an element of an array, and the other pointer points one past the18

end of the array, then the latter compares greater than the former.19

If global pointers p and q compare equal, then p == q, p <= q, and p >= q all20

result in true while p != q, p < q, and p > q all result in false. If p and q do21

not compare equal, then p != q is true while p == q is false.22

If p compares greater than q, then p > q, p >= q, q < p, and q <= p all result23

in true while p < q, p <= q, q > p, and q >= p all result in false.24

All other comparisons result in an unspecified value.25

These routines are purely functions of their arguments, they are not affected26

by the context in which they are called.27

UPC++ progress level: none28

namespace std {29

template < typename T>30

struct less <global_ptr <T>>;31

template < typename T>32

struct less_equal <global_ptr <T>>;33

template < typename T>34

struct greater <global_ptr <T>>;35

template < typename T>36

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 17

UPC++ Specification v1.0 Draft 5

struct greater_equal <global_ptr <T>>;1

template < typename T>2

struct hash <global_ptr <T>>;3

}4

Specializations of STL function objects for performing comparisons and com-5

puting hash values on global pointers. The specializations of std::less,6

std::less_equal, std::greater, and std::greater_equal all produce a7

strict total order over global pointers, even if the comparison operators do8

not. This strict total order is consistent with the partial order defined by the9

comparison operators.10

UPC++ progress level: none11

template < typename T>12

std :: ostream & operator <<(std :: ostream &os , global_ptr <T> ptr);13

Inserts an implementation-defined character representation of ptr into the out-14

put stream os. This function can be called on any valid global pointer, and the15

textual representation of two objects of type global_ptr<T> is identical if and16

only if the two global pointers compare equal.17

template < typename T, typename U>18

global_ptr <T> reinterpret_pointer_cast (global_ptr <U> ptr);19

Precondition: the expression reinterpret_cast<T*>((U*)nullptr) must be20

well formed21

Constructs a global pointer whose underlying raw pointer is obtained by using22

a cast expression on that of ptr. The affinity of the result is the same as that23

of ptr.24

If rp is the raw pointer of ptr, then the raw pointer of the result is constructed25

by reinterpret_cast<T*>(rp).26

UPC++ progress level: none27

18 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 41

Storage Management2

4.1 Overview3

UPC++ provides two flavors of storage allocation involving the shared segement. The pair4

of functions new and delete will call the class constructors and destructors, respectively,5

as well as allocate and deallocate memory from the shared segment. The pair allocate6

and deallocate allocate and deallocate dynamic memory from the shared segment, but7

do not call C++ constructors or destructors. A user may call these functions directly, or8

use placement new, or other memory management practices.9

4.2 API Reference10

template < typename T, typename ... Args >11

global_ptr <T> new_(Args &&... args);12

Precondition: T(args...) must be a valid call to a constructor for T.13

Allocates space for an object of type T from the shared segment of the current14

rank. If the allocation succeeds, returns a pointer to the start of the allocated15

memory, and the object is initialized by invoking the constructor T(args...).16

If the allocation fails, throws std::bad_alloc.17

Exceptions: May throw std::bad_alloc or any exception thrown by the call18

T(args...).19

UPC++ progress level: none20

template < typename T, typename ... Args >21

global_ptr <T> new_(const std :: nothrow_t &tag , Args &&... args);22

19

UPC++ Specification v1.0 Draft 5

Precondition: T(args...) must be a valid call to a constructor for T.1

Allocates space for an object of type T from the shared segment of the current2

rank. If the allocation succeeds, returns a pointer to the start of the allocated3

memory, and the object is initialized by invoking the constructor T(args...).4

If the allocation fails, returns a null pointer.5

Exceptions: May throw any exception thrown by the call T(args...).6

UPC++ progress level: none7

template < typename T>8

global_ptr <T> new_array (size_t n);9

Precondition: T must be DefaultConstructible.10

Allocates space for an array of n objects of type T from the shared segment of11

the current rank. If the allocation succeeds, returns a pointer to the start of12

the allocated memory, and the objects are initialized by invoking their default13

constructors. If the allocation fails, throws std::bad_alloc.14

Exceptions: May throw std::bad_alloc or any exception thrown by the call15

T(). If an exception is thrown by the constructor for T, then previously initial-16

ized elements are destroyed in reverse order of construction.17

UPC++ progress level: none18

template < typename T>19

global_ptr <T> new_array (size_t n, const std :: nothrow_t &tag);20

Precondition: T must be DefaultConstructible.21

Allocates space for an array of n objects of type T from the shared segment of22

the current rank. If the allocation succeeds, returns a pointer to the start of23

the allocated memory, and the objects are initialized by invoking their default24

constructors. If the allocation fails, returns a null pointer.25

Exceptions: May throw any exception thrown by the call T(). If an exception26

is thrown by the constructor for T, then previously initialized elements are27

destroyed in reverse order of construction.28

UPC++ progress level: none29

template < typename T>30

void delete_ (global_ptr <T> g);31

20 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 4. STORAGE MANAGEMENT

Precondition: T must be Destructible. g must be a non-deallocated pointer1

that resulted from a call to new_<T, Args...> on the current rank, for some2

value of Args....3

Invokes the destructor on the given object and deallocates the storage allocated4

to it.5

Exceptions: May throw any exception thrown by the the destructor for T.6

UPC++ progress level: none7

template < typename T>8

void delete_array (global_ptr <T> g);9

Precondition: T must be Destructible. g must be a non-deallocated pointer10

that resulted from a call to new_array<T> on the current rank.11

Invokes the destructor on each object in the given array and deallocates the12

storage allocated to it.13

Exceptions: May throw any exception thrown by the the destructor for T.14

UPC++ progress level: none15

void* allocate (size_t size ,16

size_t alignment = alignof (std :: max_align_t));17

Precondition: alignment is a valid alignment. size must be an integral mul-18

tiple of alignment.19

Allocates size bytes of memory from the shared segment of the current rank,20

with alignment as specified by alignment. If the allocation succeeds, returns21

a pointer to the start of the allocated memory, and the allocated memory is22

uninitialized. If the allocation fails, returns a null pointer.23

UPC++ progress level: none24

template < typename T, size_t alignment = alignof (T)>25

global_ptr <T> allocate (size_t n=1);26

Precondition: alignment is a valid alignment.27

Allocates enough space for n objects of type T from the shared segment of28

the current rank, with the memory aligned as specified by alignment. If the29

allocation succeeds, returns a pointer to the start of the allocated memory, and30

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 21

UPC++ Specification v1.0 Draft 5

the allocated memory is uninitialized. If the allocation fails, returns a null1

pointer.2

UPC++ progress level: none3

void deallocate (void* p);4

Precondition: p must be either a null pointer or a non-deallocated pointer that5

resulted from a call to the first form of allocate on the current rank.6

Deallocates the storage previously allocated by a call to allocate. Does noth-7

ing if p is a null pointer.8

UPC++ progress level: none9

template < typename T>10

void deallocate (global_ptr <T> g);11

Precondition: g must be either a null pointer or a non-deallocated pointer that12

resulted from a call to allocate<T, alignment> on the current rank, for some13

value of alignment.14

Deallocates the storage previously allocated by a call to allocate. Does noth-15

ing if g is a null pointer. Does not invoke the destructor for T.16

UPC++ progress level: none17

22 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 51

Futures and Promises2

5.1 Overview3

In UPC++, the primary mechanisms by which a programmer interacts with non-blocking4

operations are futures and promises.1 These two mechanisms, usually bound together5

under the umbrella concept of futures, are present in the C++11 standard. However, while6

we borrow some of the high-level concepts of C++’s futures, many of the semantics of7

upcxx::future and upcxx::promise differ from those of std::future and std::promise.8

In particular, while futures in C++ facilitate communicating between threads, the intent of9

UPC++ futures is solely to provide an interface for managing and composing non-blocking10

operations, and they cannot be used directly to communicate between threads or ranks.11

A non-blocking operation is associated with a state that encapsulates both the status of12

the operation as well as any result values. Each such operation has an associated promise13

object, which can either be explicitly created by the user or implicitly by the runtime14

when a non-blocking operation is invoked. A promise represents the producer side of the15

operation, and it is through the promise that the results of the operation are supplied and16

its dependencies fulfilled. A future is the interface through which the status of the operation17

can be queried and the results retrieved, and multiple future objects may be associated18

with the same promise. A future thus represents the consumer side of a non-blocking19

operation.20

5.2 The Basics of Asynchronous Communication21

A programmer can invoke a non-blocking operation to be serviced by another rank, such22

as a one-sided get operation (Ch. 8) or a remote procedure call (Ch. 9). Such an operation23

1Another mechanism, persona-targeted continuations, is discussed in §10.4.

23

UPC++ Specification v1.0 Draft 5

creates an implicit promise and returns an associated future object to the user. When the1

operation completes, the future becomes ready, and it can be used to access the results.2

The following demonstrates an example using a remote get (see Ch. 10 on how to make3

progress with UPC++):4

global_ptr <double > ptr = /* obtain some remote pointer */;5

future <double > fut = rget(ptr); // initiate a remote get6

// ... call into upcxx :: progress () elided ...7

if (fut.ready ()) { // check for readiness8

double value = fut. result (); // retrieve result9

std :: cout << "got: " << value << ’\n’; // use result10

}11

In general, a non-blocking operation will not complete immediately, so if a user needs12

to wait on the readiness of a future, they must do so in a loop. To facilitate this, we13

provide the wait member function, which waits on a future to complete while ensuring14

that sufficient progress (Ch. 10) is made on internal and user-level state:15

global_ptr <double > ptr = /* obtain some remote pointer */;16

future <double > fut = rget(ptr); // initiate a remote get17

fut.wait (); // wait for completion18

double value = fut. result (); // retrieve result19

std :: cout << "got: " << value << ’\n’; // use result20

An alternative to waiting for completion of a future is to attach a callback or completion21

handler to the future, to be executed when the future completes. This callback can be22

any function object, including lambda (anonymous) functions, that can be called on the23

results of the future, and is attached using then.24

global_ptr <double > ptr = /* obtain some remote pointer */;25

auto fut =26

rget(ptr). then(// initiate a remote get and register a callback27

// lambda callback function28

[](double value) {29

std :: cout << "got: " << value << ’\n’; // use result30

}31

);32

The return value of then is another future representing the results of the callback, if33

any. This permits the specification of a sequence of operations, each of which depends on34

the results of the previous one.35

A future can also represent the completion of a combination of several non-blocking36

operations. Unlike the standard C++ future, upcxx::future is a variadic template, encap-37

sulating an arbitrary number of result values that can come from different operations. The38

following example constructs a future that represents the results of two existing futures:39

24 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

future <double > fut1 = /* one future */;1

future <int > fut2 = /* another future */;2

future <double , int > combined = when_all (fut1 , fut2);3

Here, combined represents the state and results of two futures, and it will be ready4

when both fut1 and fut2 are ready. The results of combined are a std::tuple whose5

components are the results of the source futures.6

5.3 Working with Promises7

In addition to the implicit promises created by non-blocking operations, a user may explic-8

itly create a promise object, obtain associated future objects, and then register non-blocking9

operations on the promise. This is useful in several cases, such as when a future is required10

before a non-blocking operation can be initiated, or where a single promise is used to count11

dependencies.12

A promise can also be used to count anonymous dependencies, keeping track of opera-13

tions that complete without producing a value. Upon creation, a promise has a dependency14

count of one, representing the unfulfilled results or, if there are none, an anonymous de-15

pendency. Further anonymous dependencies can then be registered on the promise. When16

registration is complete, the original dependency can then be fulfilled to signal the end of17

registration. The following example keeps track of several remote put operations with a18

single promise:19

global_ptr <int > ptrs [10] = /* some remote pointers */;20

// create a promise with no results21

// the dependency count starts at one22

promise <> prom;23

24

// do 10 puts , registering each of them on the promise25

for (int i = 0; i < 10; i++) {26

// rput implicitly registers itself on the given promise27

rput(i, ptrs[i], operation_cx :: as_promise (prom));28

}29

30

// fulfill initial anonymous dependency , since registration is done31

future <> fut = prom. finalize ();32

33

// wait for the rput operations to complete34

fut.wait ();35

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 25

UPC++ Specification v1.0 Draft 5

5.4 Advanced Callbacks1

Polling for completion of a future allows simple overlap of communication and computation2

operations. However, it introduces the need for synchronization, and this requirement can3

diminish the benefits of overlap. To this end, many programs can benefit from the use4

of callbacks. Callbacks avoid the need for an explicit wait and enable reactive control5

flow: future completion triggers a callback. Callbacks allow operations to occur as soon as6

they are capable of executing, rather than artificially waiting for an unrelated operation7

to complete before being initiated.8

Futures are the core abstraction for obtaining asynchronous results, and an API that9

supports asynchronous behavior can work with futures rather than values directly. Such10

an API can also work with immediately available values by having the caller wrap the11

values into a ready future using the make_future function template, as in this example12

that creates a future for an ordered pair of a double and an int:13

void consume (future <int , double > fut);14

consume (make_future (3, 4.1));15

Given a future, we can attach a callback to be executed at some subsequent point when16

the future is ready using the then member function:17

future <int , double > source = /* obtain a future */;18

future <double > result = source .then(19

[](int x, double y) {20

return x + y;21

}22

);23

In this example, source is a future representing an int and a double value. The24

argument of the call to then must be a function object that can be called on these values.25

Here, we use a lambda function that takes in an int and a double. The call to then26

returns a future that represents the result of calling the argument of then on the values27

contained in source. Since the lambda function above returns a double, the result of then28

is a future<double> that will hold the double’s value when it is ready.29

There is also another case, when the callback returns a future, rather than some non-30

future type. In previous case, the result of then() is obtained by wrapping return type31

inside a future. In this case, this step is not needed, as we are already returning a future.32

Thus, the result of the call to then has the same type as the return type of the callback.33

However, there is an important difference: the result is a future, which may or may not be34

ready. In the first case, it is the returned non-future value that may or may or may not35

be ready. This subtle difference, allows the UPC++ programmer to chain the results of one36

asynchronous operation into the inputs of the next, to arbitrary degree of nesting.37

future <int , double > source = /* obtain a future */;38

26 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

future <double > result = source .then(1

[](int x, double y) {2

// return a future <double > that is ready3

return make_future (x + y);4

}5

);6

// result may not be ready , since the callback will not be executed7

// until source is ready8

A callback may also initiate new asynchronous work and return a future representing9

the completion of that work:10

global_ptr <int > remote_array = /* some remote array */;11

12

// retrieve remote_array [0]13

future <int > elt0 = rget(remote_array);14

15

// retrieve remote_array [remote_array [0]]16

future <int > elt_indirect = elt0.then(17

[=](int index) {18

return rget(remote_array + index);19

}20

);21

The then member function is a combinator for constructing pipelines of transformations22

over futures. Given a future and a function that transforms that future’s value into another23

value, then produces a future representing the post-transformation value. For example,24

we can future transform the value of elt_indirect above as follows:25

future <int > elt_indirect_squared = elt_indirect .then(26

[](int value) {27

return value * value;28

}29

);30

As the examples above demonstrate, the then member function allows a callback to31

depend on the result of another future. A more general pattern is for an operation to32

depend on the results of multiple futures. The when_all function template enables this33

by constructing a single future that combines the results of multiple futures:34

future <int > value1 = /* ... */;35

future <double > value2 = /* ... */;36

37

future <int , double > combined = when_all (value1 , value2);38

future <double > result = combined .then(39

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 27

UPC++ Specification v1.0 Draft 5

[](int x, double y) {1

return x + y;2

}3

);4

A callback (made via then) can depend on multiple futures. We register the callback5

with a combined future, constructed with when_all. The when_all is restricted to combin-6

ing lists of futures only. In the more general case, we may need to combine heterogeneous7

mixtures of future and non-future types. The to_future function template provides a8

further generalization, combining values from futures as well as raw (non-future) values9

themselves. While when_all can be used to meet this need (by wrapping raw values in10

calls to make_future), a call to to_future does this automatically:11

future <int > value1 = /* ... */;12

double value2 = /* ... */;13

14

future <int , double > combined = to_future (value1 , value2);15

future <double > result = combined .then(16

[](int x, double y) {17

return x + y;18

}19

);20

The results of a future can be obtained, if it is ready, as a std::tuple using the21

result_tuple member function of a future. Individual components can be retrieved by22

value with the result member function template or by r-value reference with result_moved.23

Unlike with std::get, it is not a compile-time error to use an invalid index with result24

or result_moved; instead, the return type is void for an invalid index. This simplifies25

writing generic functions on futures, such as the following C++14-compliant definition of26

wait:27

template < typename ...T>28

auto future <T... >:: wait () {29

while (! ready ()) {30

progress ();31

}32

return result ();33

}34

5.5 Execution Model35

Futures have the capability to express dataflow/task-based programming, and other soft-36

ware frameworks provide thread-level parallelism by considering each callback to be a task37

28 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

that can be run in an arbitrary worker thread. This is not the case in UPC++. In order1

to maximize performance, our approach to futures is purposefully ambivalent to issues of2

concurrency. A UPC++ implementation is allowed to take action as if the current thread is3

the only one that needs to be accounted for. This gives rise to a natural execution policy:4

callbacks registered against futures are always executed as soon as possible by the thread5

that discovers them. There are exactly two scenarios in which this may happen:6

1. When a promise is fulfilled.7

2. A callback is registered onto a ready future using the then member function.8

Fulfilling a promise (via fulfill_result, fulfill_anonymous or finalize) is the only9

operation that can take a future from a non-ready to a ready state, enabling callbacks that10

depend on it to execute. This makes promise fulfillment an obvious place for discovering11

and executing such callbacks. Thus, whenever a thread calls a fulfillment function on a12

promise, the user must anticipate that any newly available callbacks will be executed by13

the current thread before the fulfillment call returns.14

The other place in which a callback will execute immediately is during the invocation15

of then on a future that is already in its ready state. In this case, the callback provided16

will fire immediately during the call to then.17

There are some common programming contexts where it is not safe for a callback to18

execute during fulfillment of a promise. For example, it is generally unsafe to execute a19

callback that modifies a data structure while a thread is traversing the data structure. In20

such a situation, it is the user’s responsibility to ensure that a conflicting callback will not21

execute. One solution is create a promise that represents a thread reaching its safe-to-22

execute context, and then adding it to the dependency list of any conflicting callback.23

future <int > value = /* ... */;24

// create a promise representing a safe -to - execute state25

// dependency count is initially 126

promise <> safe_state ;27

// create a future that depends on both value and safe_state28

future <int > combined = when_all (value , safe_state . get_future ());29

auto fut = // register a callback on the combined future30

combined .then(/* some callback that requires a safe state */);31

// do some work , potentially fulfilling value ’s promise ...32

// signify a safe state33

safe_state . finalize ();34

// callback can now execute35

As demonstrated above, the user can wait to fulfill the promise until it is safe to execute36

the callback, which will then allow it to execute.37

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 29

UPC++ Specification v1.0 Draft 5

5.6 Anonymous Dependencies1

As demonstrated previously, promises can be used to both supply values as well as signal2

completion of events that do not produce a value. As such, a promise is a unified abstraction3

for tracking the completion of asynchronous operations, whether the operations produce a4

value or not. A promise represents at most one dependency that produces a value, but it5

can track any number of anonymous dependencies that do not result in a value.6

When created, a promise starts with an initial dependency count of 1. For an empty7

promise (promise<>), this is necessarily an anonymous dependency, since an empty promise8

does not hold a value. For a non-empty promise, the initial count represents the sole9

dependency that produces a value. Further anonymous dependencies can be explicitly10

registered on a promise with the require_anonymous member function:11

promise <int , double > pro; // initial dependency count is 112

pro. require_anonymous (10); // dependency count is now 1113

The argument to require_anonymous must be strictly greater than the negation of14

the promise’s dependency count, so that a call to require_anonymous never causes the15

dependency count to reach zero, putting the promise in the fulfilled state. In the example16

above, the argument must be greater than -1, and the given argument of 10 is valid.17

Anonymous dependencies can be fulfilled by calling the fulfill_anonymous member18

function:19

for (int i = 0; i < 5; i++) {20

pro. fulfill_anonymous (i);21

} // dependency count is now 122

A non-anonymous dependency is fulfilled by calling fulfill_result with the produced23

values:24

pro. fulfill_result (3, 4.1); // dependency count is now 025

assert (pro. get_future (). ready ());26

Both empty and non-empty promises can be used to track anonymous dependencies. A27

UPC++ operation that operates on a promise always increments its dependency count upon28

invocation, as if by calling require_anonymous(1) on the promise. After the operation29

completes2, if the completion produces values of type T..., then the values are supplied30

to the promise through a call to fulfill_result. Otherwise, the completion is signaled31

by fulfilling an anonymous dependency through a call to fulfill_anonymous(1).32

The rationale for this behavior is to free the user from having to manually increment the33

dependency count before calling an operation on a promise; instead, UPC++ will implicitly34

perform this increment. This leads to the pattern, shown at the beginning of this chapter,35

2The notification will occur during user-level progress of the persona that initiates the operation. See
Ch. 10 for more details.

30 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

of registering operations on a promise and then finalizing the promise to take it out of1

registration mode:2

global_ptr <int > ptrs [10] = /* some remote pointers */;3

promise <> prom; // dependency count is 14

5

for (int i = 0; i < 10; i++) {6

rput(i, ptrs[i],7

operation_cx :: as_promise (prom)); // increment count8

} // dependency count is now 119

10

future <> fut = prom. finalize (); // decrement count , making it 1011

12

// wait for the 10 rput operations to complete13

fut.wait ();14

A user familiar with UPC++ V0.1 will observe that empty promises subsume the ca-15

pabilities of events in UPC++ V0.1. In addition, they can take part in all the machinery16

of promises, futures, and callbacks, providing a much richer set of capabilities than were17

available in V0.1.18

5.7 Lifetime and Thread Safety19

Understanding the lifetime of objects in the presence of asynchronous control flow can be20

tricky. Objects must outlive the last callback that references them, which in general does21

not follow the scoped lifetimes of the call stack. For this reason, UPC++ automatically man-22

ages the state represented by futures and promises, and the state persists for as long as23

there is a future, promise, or dependent callback that references it. Thus, a user can con-24

struct intricate webs of callbacks over futures without worrying about explicitly managing25

the state representing the callbacks’ dependencies or results.26

Though UPC++ does not prescribe a specific management strategy, the semantics of27

futures and promises are analogous to those of standard C++11 smart pointers. As with28

std::shared_ptr, a future may be freely copied, and both the original and the copy29

represent the same state and are associated with the same promise. Thus, if one copy30

of a future becomes ready, then so will the other copies. On the other hand, a promise31

can be mutated by the user through its member functions, so allowing a promise to be32

copied would introduce the issue of aliasing. Instead, we adopt the same non-copyable, yet33

movable, semantics for a promise as std::unique_ptr.34

Given that UPC++ futures and promises are already thread-unaware to allow the ex-35

ecution strategy to be straightforward and efficient, UPC++ also makes no thread safety36

guarantees about internal state management. This enables creation of copies of a future37

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 31

UPC++ Specification v1.0 Draft 5

to be a very cheap operation. For example, a future can be captured by value by a lambda1

function or passed by value without any performance penalties. On the other hand, the2

lack of thread safety means that sharing a future between threads must be handled with3

great caution. Even a simple operation such as making a copy of a future, as when passing4

it by value to a function, is unsafe if another thread is concurrently accessing an identical5

future, since the act of copying it can modify the internal management state. Thus, a6

mutex or other synchronization is required to ensure exclusive access to a future when7

performing any operation on it.8

Fulfilling a promise gives rise to an even more stringent demand, since it can set off a9

cascade of callback execution. Before fulfilling a promise, the user must ensure that the10

thread has the exclusive right to mutate not just the future associated with the promise,11

but all other futures that are directly or indirectly dependent on fulfillment of the promise.12

Thus, when crafting their code, the user must properly manage exclusivity for islands of13

disjoint futures. We say that two futures are in disjoint islands if there is no dependency,14

direct or indirect, between them.15

A reader having previous experience with futures will note that UPC++’s formulation is16

a significant departure from many other software packages. Futures are commonly used17

to pass data between threads, like a channel that a producing thread can supply a value18

into, notifying a consuming thread of its availability. UPC++, however, is intended for19

high-performance computing, and supporting concurrently shareable futures would require20

synchronization that would significantly degrade performance. As such, futures in UPC++21

are not intended to directly facilitate communication between threads. Rather, they are22

designed for a single thread to manage the non-determinism of reacting to the events23

delivered by concurrently executing agents, be they other threads or the network hardware.24

5.8 API Reference25

UPC++ progress level for all functions in this chapter is: none26

5.8.1 future27

template < typename ...T>28

class future ;29

C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable,30

Destructible31

The types in T... must not be void.32

template < typename ...T>33

future <T... >:: future ();34

32 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

Constructs a future that will never become ready.1

This function may be called when UPC++ is in the uninitialized state.2

template < typename ...T>3

future <T... >::˜ future ();4

Destructs this future object.5

This function may be called when UPC++ is in the uninitialized state.6

template < typename ...T>7

future <T...> make_future (T ... results);8

Constructs a trivially ready future from the given values.9

template < typename ...T>10

bool future <T... >:: ready () const;11

Returns true if the future’s result values have been supplied to it.12

template < typename ...T>13

std :: tuple <T...> const& future <T... >:: result_tuple () const;14

Precondition: this->ready()15

Retrieves the tuple of result values for this future.16

template < typename ...T>17

template <int I=0>18

future_element_t <I, future <T...>>19

future <T... >:: result () const;20

Precondition: this->ready()21

Retrieves the Ith component (defaults to first) from the future’s results tuple.22

The return type is void if I is an invalid index. Otherwise it is of type U, where23

U is the Ith component of T.24

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 33

UPC++ Specification v1.0 Draft 5

template < typename ...T>1

template <int I=0>2

future_element_moved_t <I, future <T...>>3

future <T... >:: result_moved ();4

Precondition: this->ready()5

Retrieves the Ith component (defaults to first) from the future’s results tuple as6

an r-value reference, as if by calling std::move on the component. The return7

type is void if I is an invalid index. Otherwise it is of type U&&, where U is8

the Ith component of T. Caution: this operation permits mutation of the value,9

via an rvalue reference which could be observed by further calls that return the10

result(s) of a future.11

template < typename ...T>12

template < typename Func >13

future_invoke_result_t <Func , T...>14

future <T... >:: then(Func func);15

Preconditions: The call func() must not throw an exception.16

Returns a new future representing the return value of the given function object17

func when invoked on the results of this future as its argument list. If func18

returns a future, then the result of then will be a semantically equivalent future,19

except that it will be in a non-ready state before func executes. If func does20

not return a future, then the return value of then is a future that encapsulates21

the result of func, and this future will also be in a non-ready state before func22

executes. If the return type of func is void, then the return type of then is23

future<>.24

The function object will be invoked in one of two situations:25

• Immediately before then returns if this future is in the ready state.26

• During a promise fulfillment which would directly or indirectly make this27

future transition to the ready state.28

template < typename ...T>29

future_element_t <0, future <T...>> future <T... >:: wait ();30

Waits for the future by repeatedly attempting UPC++ user-level progress and31

testing for readiness. See Ch. 10 for a discussion of progress. The return value32

is the same as that produced by calling result() on the future.33

34 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

template < typename ... Futures >1

future < CTypes ...> when_all (Futures ... fs);2

Given a variadic list of futures as arguments, constructs a future representing3

the readiness of all arguments. The results tuple of this future will be the4

concatenated results tuples of the arguments. The type parameters of the5

returned object (CTypes...) is the ordered concatenation of the type parameter6

lists of the types in Futures.7

template < typename ...T>8

future < CTypes ...> to_future (T ... futures_or_results);9

Given a variadic list of futures and/or non-futures as arguments, constructs a10

future representing the readiness of all the arguments that are futures. The11

results tuple of this future will be the concatenation of the result tuples of each12

future argument and the values of each non-future argument, in the order in13

which each argument occurs in futures_or_results. The type parameters of14

the returned object (CTypes...) is the concatenation of the type parameter15

lists of the future types in T and the non-future types themselves in T, in the16

order in which each type appears in T.17

If none of the arguments are futures, then the resulting future object is trivially18

ready.19

5.8.2 promise20

template < typename ...T>21

class promise ;22

C++ Concepts: DefaultConstructible, MoveConstructible, MoveAssignable,23

Destructible24

The types in T... must not be void.25

template < typename ...T>26

promise <T... >:: promise ();27

Constructs a promise with its results uninitialized and an initial dependency28

count of 1.29

This function may be called when UPC++ is in the uninitialized state.30

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 35

UPC++ Specification v1.0 Draft 5

template < typename ...T>1

promise <T... >::˜ promise ();2

Destructs this promise object.3

This function may be called when UPC++ is in the uninitialized state.4

template < typename ...T>5

void promise <T... >:: require_anonymous (std :: intptr_t count);6

Precondition: The dependency count of this promise is greater than (-count)7

and greater than 0.8

Adds count to this promise’s dependency count.9

template < typename ...T>10

template < typename ...U>11

void promise <T... >:: fulfill_result (U &&... results);12

Precondition: fulfill_result has not been called on this promise before, and13

the dependency count of this promise is greater than zero.14

Initializes the promise’s result tuple with the given values and decrements the15

dependency counter by 1. Requires that T and U have the same number of16

components, and that each component of U is implicitly convertible to the17

corresponding component of T. If the dependency counter reaches zero as a18

result of this call, the associated future is set to ready, and callbacks that are19

waiting on the future are executed on the calling thread before this function20

returns.21

template < typename ...T>22

void promise <T... >:: fulfill_anonymous (std :: intptr_t count);23

Precondition: The dependency count of this promise is greater than or equal24

to count. If the dependency count is equal to count and T is not empty, then25

the results of this promise must have been previously supplied by a call to26

fulfill_result.27

Subtracts count from the dependency counter. If this produces a zero counter28

value, the associated future is set to ready, and callbacks that are waiting on29

the future are executed on the calling thread before this function returns.30

36 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 5. FUTURES AND PROMISES

template < typename ...T>1

future <T...> promise <T... >:: get_future () const;2

Returns the future representing this promise being fulfilled. Repeated calls to3

get_future return equivalent futures with the guarantee that no additional4

memory allocation is performed.5

template < typename ...T>6

future <T...> promise <T... >:: finalize ();7

Equivalent to calling this->fulfill_anonymous(1) and then returning the8

result of this->get_future().9

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 37

Chapter 61

Serialization2

As a communication library, UPC++ needs to send C++ types between ranks that might3

be separated by a network interface. The underlying GASNet networking interface sends4

and receives bytes, thus, UPC++ needs to be able to convert C++ types to and from bytes.5

For standard TriviallyCopyable data types, UPC++ can serialize and deserialize these6

objects for the user without extra intervention on their part. For user data types that have7

more involved serialization requirements, the user needs to take two steps to inform UPC++8

about how to serialize the object.9

1. Declare their type to be a friend of access10

2. Implement the visitor function serialize11

Figure 6.1 provides an example of this process. The definition of the & operator for the12

Archive class depends on whether UPC++ is serializing or deserializing an object instance.13

UPC++ provides implementations of operator& for the C++ built-in types. UPC++ se-14

rialization is compatible with a subset of the Boost serialization interface. This does15

not imply that UPC++ includes or requires Boost as a dependency. The reference im-16

plementation of UPC++ does neither of these, it comes with its own implementation of17

serialization that simply adheres to the interface set by Boost. It is acceptable to have18

friend boost::serialization::access in place of friend upcxx::access. UPC++ will19

use your Boost serialization in that case.20

There are restrictions on which actions serialization/deserialization routines may per-21

form. They are:22

1. Serialization/deserialization may not call any UPC++ routine with a progress level23

other than none.24

2. UPC++ must perceive these routines as referentially transparent. Loosely, this means25

that the routines should be “pure” functions between the native representation and26

a flat sequence of bytes.27

38

CHAPTER 6. SERIALIZATION

class UserType {15

// The user ’s fields and member declarations as usual.16

int member1 , member2 ;17

// ...18

19

// To enable the serializer to visit the member fields ,20

// the user provides this ...21

friend class upcxx :: access ;22

23

// ... and this24

template < typename Archive >25

void serialize (Archive &ar , unsigned) {26

ar & this -> member1 ;27

ar & this -> member2 ;28

// ...29

}30

};31

Figure 6.1: An example of using access in a user-defined class

3. The routines must be thread-safe and permit concurrent invocation from multiple1

threads, even when serializing the same object.2

6.1 Functions3

In Chapter 7 (Completion) and Chapter 9 (Remote Procedure Calls) there are several cases4

where a C++ FunctionObject is expected to execute on a destination rank. In these cases5

the function arguments are serialized as described in this chapter. The FunctionObject6

itself is converted to a function pointer offset from a known sentinel in the source program’s7

code segment. The details of the implementation are not described here but typical allowed8

FunctionObjects are9

• C functions10

• C++ global and file-scope functions11

• Class static functions12

• lambda functions13

Calling member functions on remote objects requires additional steps described in14

Chapter 13 (Distributed Objects).15

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 39

Chapter 71

Completion2

7.1 Overview3

Data movement operations come with the concept of completion, meaning that the effect4

of the operation is now visible on the source or target rank and that resources, such as5

memory on the source and destination sides, are no longer in use by UPC++. A single6

UPC++ call may have several completion events associated with it, indicating completion of7

different stages of a communication operation. These events are categorized as follows:8

• Source completion: The source-side resources of a communication operation are no9

longer in use by UPC++, and the application is now permitted to modify or reclaim10

them.11

• Remote completion: The data have been deposited on the remote target rank, and12

they can be consumed by the target.13

• Operation completion: The operation is complete from the viewpoint of the initiator.14

The transferred data can now be read by the initiator, resulting in the values that15

were written to the target locations.16

A completion event may be associated with some values produced by the communication17

operation, or it may merely signal completion of an action. Each communication operation18

specifies the set of completion events it provides, as well as the values that a completion19

event produces. Unless otherwise indicated, a completion event does not produce a value.20

UPC++ provides several alternatives for how completion can be signaled to the program:21

• Future: The communication call returns a future, which will be readied when the22

completion event occurs. This is the default notification mode for communication23

operations. If the completion event is associated with some values of type T..., then24

40

CHAPTER 7. COMPLETION

the returned future will have type future<T...>. If no value is associated with the1

completion, then the future will have type future<>.2

• Promise: The user provides a promise when requesting notification of a completion3

event, and that promise will have one its dependencies fulfilled when the event occurs.4

The promise must have a non-zero dependency count. If the completion event is asso-5

ciated with some values of type T..., then it must be valid to call fulfill_result()6

on the promise with values of type T..., and the promise must not have had7

fulfill_result() called on it. The promise will then have fulfill_result()8

called on it with the associated values when the completion event occurs. If no value9

is associated with the completion, then the promise may have any type. It will have10

an anonymous dependency fulfilled upon the completion event.11

• Local-Procedure Call (LPC): The user provides a target persona and a callback func-12

tion object when requesting notification of a completion event. If the completion13

is associated with some values of type T..., then the callback must be invokable14

with arguments of type T.... Otherwise, it must be invokable with no arguments.15

The callback, together with the associated completion values if any, is enlisted for16

execution on the given persona when the completion event occurs.17

• Remote-Procedure Call (RPC): The user provides a Serializable function object when18

requesting notification of a completion event, as well as the arguments on which the19

function object should be invoked. Each argument must either by Serializable, a20

dist_object<T>, or a team. The function object and arguments are transferred as21

part of the communication operation, and the invocation is enlisted for execution on22

the master persona of the target rank when the completion event occurs.23

• Buffered: The communication call consumes the source-side resources of the operation24

before the call returns, allowing the application to immediately modify or reclaim25

them. This delays the return of the call until after the source-completion event. The26

implementation may internally buffer the source-side resources or block until network27

resources are available to inject the data directly.28

• Blocking: This is similar to buffered completion, except that the implementation is29

required to block until network resources are available to inject the data directly.30

Future, promise, and LPC completions are only valid for completion events that occur31

at the initiator of a communication call, namely source and operation completion. RPC32

completion is only valid for a completion event that occurs at the target of a communication33

operation, namely remote completion. Buffered and blocking completion are only valid for34

source completion. More details on futures and promises are in Ch. 5, while LPC and35

RPC callbacks are discussed in Ch. 10.36

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 41

UPC++ Specification v1.0 Draft 5

Notification of completion only happens during user-level progress of the initiator or1

target rank. Even if an operation completes early, including before the initiation operation2

returns, the application cannot learn this fact without entering user progress. For futures3

and promises, only when the initiating thread (persona actually) enters user-level progress4

will the future or promise be eligible for taking on a readied or fulfilled state. LPC callbacks5

will execute once a thread enters user progress of the designated persona. See Ch. 10 for6

the full discussion on user progress and personas.7

If buffered or blocking completion is requested, then the source-completion event occurs8

before the communication call returns. However, source-completion notifications, such as9

triggering a future or executing an LPC, are still delayed until the next user-level progress.10

Operation completion implies both source and remote completion. However, it does not11

imply that the actions associated with source and remote completion have been executed.12

7.2 Completion Objects13

The UPC++ mechanism for requesting notification of completion is through opaque com-14

pletion objects, which associate notification actions with completion events. Completion15

objects are CopyConstructible, CopyAssignable, and Destructible, and the same comple-16

tion object may be passed to multiple communication calls. A simple completion object17

is constructed by a call to a static member function of the source_cx, remote_cx, or18

operation_cx class, providing notification for the corresponding event. The member func-19

tions as_future, as_promise, as_lpc, and as_rpc request notification through a future,20

promise, LPC, or RPC, respectively. Only the member functions that correspond to valid21

means of signaling notification of an event are defined in the class associated with that22

event.23

The following is an example of a simple completion object:24

global_ptr <int > gp1 = /* some global pointer */;25

promise <int > pro1;26

auto cxs = operation_cx :: as_promise (pro1);27

rget(gp1 , cxs);28

pro1. finalize (); // fulfill the initial anonymous dependency29

The rget function, when provided just a global_ptr<int>, transfers a single int from30

the given location to the initiator. Thus, operation completion is associated with an int31

value, and the promise used for signaling that event must have type compatible with an32

int value, e.g. promise<int>. The user constructs a completion object that requests33

operation notification on the promise pro1 by calling operation_cx::as_promise(pro1).34

Since a completion object is opaque, the auto keyword is used to deduce the type of the35

completion object. The resulting completion object can then be passed to rget, which36

fulfills the promise with the transferred value upon operation completion.37

42 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 7. COMPLETION

A user can request notification of multiple completion events, as well as multiple no-1

tifications of a single completion event. The pipe (|) operator can be used to combine2

completion objects to construct a union of the operands. The following is an example:3

int foo () {4

return 0;5

}6

7

int bar(int x) {8

return x;9

}10

11

void do_comm (double *src , size_t count) {12

global_ptr <double > dest = /* some global pointer */;13

promise <> pro1;14

persona &per1 = /* some persona */;15

auto cxs = (operation_cx :: as_promise (pro1) |16

source_cx :: as_future () |17

operation_cx :: as_future () |18

operation_cx :: as_future () |19

source_cx :: as_lpc (per1 , foo) |20

remote_cx :: as_rpc (bar , 3)21

);22

std :: tuple <future <>, future <>, future <>> result =23

rput(src , dest , count , cxs);24

pro1. finalize (). wait (); // finalize promise , wait on its future25

}26

This code initiates an rput operation, which provides source-, remote-, and operation-27

completion events. A unified completion object is constructed by applying the pipe op-28

erator to individual completion objects. When rput is invoked with the resulting unified29

completion object, it returns a tuple of futures corresponding to the individual future com-30

pletions requested. The ordering of futures in this tuple matches the order of application31

of the pipe operator (this operator is associative but not commutative). In the example32

above, the first future in the tuple would correspond to source completion, and the second33

and third would be for operation completion. If no future-based notification is requested,34

then the return type of the communication call would be void rather than a tuple.35

When multiple notifications are requested for a single event, the order in which those36

notifications occur is unspecified. In the code above, the order in which pro1 is fulfilled37

and the two futures for operation completion are readied is indeterminate. Similarly, if38

both source and operation completion occur before the next user-level progress, the order39

in which the notifications occur is unspecified, so that operation-completion requests may40

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 43

UPC++ Specification v1.0 Draft 5

be notified before source-completion requests.1

Unlike a direct call to the rpc function (Ch. 9), but like a call to rpc_ff, an RPC2

completion callback does not return a result to the initiator. Thus, the value returned by3

the RPC invocation of bar above is discarded.4

Arguments to remote_cx::as_rpc are serialized at an unspecified time between the5

invocation of as_rpc and the source completion event of a communication operation that6

accepts the resulting completion object. If multiple communication operations use a single7

completion object resulting from as_rpc, then the arguments may be serialized multiple8

times. For arguments that are not passed by value, the user must ensure that they re-9

main valid until source completion of all communication operations that use the associated10

completion object.11

7.2.1 Restrictions12

The API reference for a UPC++ call that supports the completion interface lists the comple-13

tion events that the call provides, as well as the types of values associated with each event,14

if any. The result is undefined if a completion object is passed to a call and the object15

contains a request for an event that the call does not support. Passing a completion object16

that contains a request whose type does not match the types provided by the corresponding17

completion event, as described in §7.1, also results in undefined behavior.18

If a UPC++ call provides both operation and remote completion, then at least one must19

be requested by the provided completion object. If a call provides operation but not remote20

completion, then operation completion must be requested. The behavior of the program is21

undefined if neither operation nor remote completion is requested from a call that supports22

one or both of operation or remote completion.23

A promise object associated with a promise-based completion request must have a24

dependency count greater than zero when the completion object is passed to a UPC++25

operation. The result is undefined if the same promise object is used in multiple requests26

for notifications that produce values.27

7.2.2 Completion and Return Types28

In subsequent API-reference sections, the opaque type of a completion object is denoted29

by CType. Similarly, RType denotes a return type that is dependent on the completion30

object passed to a UPC++ call. This return type is as follows:31

• void, if no future-based completions are requested32

• future<T...>, if a single future-based completion is requested, where T... is the33

sequence of types associated with the given completion event34

44 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 7. COMPLETION

• std::tuple<future<T...>...>, if multiple future-based completions are requested,1

where each future’s arguments T... is the sequence of types associated with the2

corresponding completion event3

Type deduction, such as with auto, is recommended when working with completion objects4

and return types.5

7.2.3 Default Completions6

If a completion object is not explicitly provided to a communication call, then a default7

completion object is used. For most calls, the default is operation_cx::as_future().8

However, for rpc_ff, the default completion is source_cx::as_buffered(), and for rpc,9

it is source_cx::as_buffered() | operation_cx::as_future(). The default comple-10

tion of a UPC++ communication call is listed in its API reference.11

7.3 API Reference12

struct source_cx ;13

14

struct remote_cx ;15

16

struct operation_cx ;17

Types that contain static member functions for constructing completion objects18

for source, remote, and operation completion.19

[static] CType source_cx :: as_future ();20

21

[static] CType operation_cx :: as_future ();22

Constructs a completion object that represents notification of source or opera-23

tion completion with a future.24

UPC++ progress level: none25

template < typename ...T>26

[static] CType source_cx :: as_promise (promise <T...> &pro);27

28

template < typename ...T>29

[static] CType operation_cx :: as_promise (promise <T...> &pro);30

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 45

UPC++ Specification v1.0 Draft 5

Precondition: pro must have a dependency count greater than zero.1

Constructs a completion object that represents signaling the given promise2

upon source or operation completion.3

UPC++ progress level: none4

template < typename Func >5

[static] CType source_cx :: as_lpc (persona &target , Func func);6

7

template < typename Func >8

[static] CType operation_cx :: as_lpc (persona &target , Func func);9

Preconditions: Func must be a function-object type and CopyConstructible.10

func must not throw an exception when invoked.11

Constructs a completion object that represents the enqueuing of func on the12

given local persona upon source or operation completion.13

UPC++ progress level: none14

template < typename Func , typename ... Args >15

[static] CType remote_cx :: as_rpc (Func func , Args ... && args);16

Precondition: Func must be Serializable and CopyConstructible and a function-17

object type. Each of Args... must either be a Serializable and CopyCon-18

structible type, or dist_object<T>&, or team&. The call func(args...) must19

not throw an exception.20

Constructs a completion object that represents the enqueuing of func on a21

target rank upon remote completion.22

UPC++ progress level: none23

[static] CType source_cx :: as_buffered ();24

Constructs a completion object that represents buffering source-side resources25

or blocking until they are consumed before a communication call returns, de-26

laying the return until the source-completion event occurs.27

UPC++ progress level: none28

[static] CType source_cx :: as_blocking ();29

46 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 7. COMPLETION

Constructs a completion object that represents blocking until source-side re-1

sources are consumed before a communication call returns, delaying the return2

until the source-completion event occurs.3

UPC++ progress level: none4

template < typename CTypeA , CTypeB >5

CType operator |(CTypeA a, CTypeB b);6

Precondition: CTypeA and CTypeB must be completion types.7

Constructs a completion object that is the union of the completions in a and8

b. Future-based completions in the result are ordered the same as in a and b,9

with those in a preceding those in b.10

UPC++ progress level: none11

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 47

Chapter 81

One-Sided Communication2

8.1 Overview3

The main one-sided communication functions for UPC++ are rput and rget. Where possi-4

ble, the underlying transport layer will use RDMA techniques to provide the lowest-latency5

transport possible. The type T used by rput or rget needs to be Serializable, either in the6

sense of C++ TriviallyCopyable or by overriding the global upcxx::serialize function7

as described in Chapter 6 (Serialization).8

8.2 API Reference9

8.2.1 Remote Puts10

template < typename T,11

typename Completions = decltype (operation_cx :: as_future ())>12

RType rput(T value , global_ptr <T> dest ,13

Completions cxs= Completions {});14

Precondition: T must be Serializable. dest must reference a valid object of15

type T.16

Either serializes value immediately or copies it into an internal location for17

eventual serialization. After serialization, initiates a transfer of the data which18

will deserialize and store it in the memory referenced by dest.19

Completions:20

• Remote: Indicates completion of the transfer and deserialization of value.21

48

CHAPTER 8. ONE-SIDED COMMUNICATION

• Operation: Indicates completion of all aspects of the operation: serializa-1

tion, deserialization, the remote store, and destruction of any internally2

managed T values are complete.3

C++ memory ordering: The writes to dest will have a happens-before re-4

lationship with the operation-completion notification actions (future readying,5

promise fulfillment, or persona LPC enlistment) and remote-completion actions6

(RPC enlistment). For LPC and RPC completions, all evaluations sequenced-7

before this call will have a happens-before relationship with the execution of the8

completion function.9

UPC++ progress level: internal10

template < typename T,11

typename Completions = decltype (operation_cx :: as_future ())>12

RType rput(T const *src , global_ptr <T> dest , std :: size_t count ,13

Completions cxs= Completions {});14

Precondition: T must be Serializable. Addresses in the intervals [src,src+count)15

and [dest,dest+count) must all reference valid objects of type T. No object16

may be referenced by both intervals.17

Initiates an operation to serialize, transfer, deserialize, and store the count18

items of type T beginning at src to the memory beginning at dest. The values19

referenced in the [src,src+count) interval must not be modified until either20

source or operation completion is indicated.21

Completions:22

• Source: Indicates completion of serialization of the source values, signify-23

ing that the src buffer may be modified.24

• Remote: Indicates completion of the transfer and deserialization of the25

values, implying readiness of the target buffer [dest,dest+count).26

• Operation: Indicates completion of all aspects of the operation: serializa-27

tion, deserialization, the remote store, and destruction of any internally28

managed T values are complete.29

C++ memory ordering: The reads of src will have a happens-before relationship30

with the source-completion notification actions (future readying, promise ful-31

fillment, or persona LPC enlistment). The writes to dest will have a happens-32

before relationship with the operation-completion notification actions (future33

readying, promise fulfillment, or persona LPC enlistment) and remote-completion34

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 49

UPC++ Specification v1.0 Draft 5

actions (RPC enlistment). For LPC and RPC completions, all evaluations1

sequenced-before this call will have a happens-before relationship with the exe-2

cution of the completion function.3

UPC++ progress level: internal4

8.2.2 Remote Gets5

template < typename T,6

typename Completions = decltype (operation_cx :: as_future ())>7

RType rget(global_ptr <T> src ,8

Completions cxs= Completions {});9

Precondition: T must be Serializable. src must reference a valid object of type10

T.11

Initiates a transfer to this rank of a single value of type T located at src.12

The value will be serialized on the source rank, transferred, deserialized on the13

calling rank, and delivered in the operation-completion notification.14

Completions:15

• Operation: Indicates completion of all aspects of the operation, including16

serialization, transfer, and deserialization, and readiness of the resulting17

value. This completion produces a value of type T.18

C++ memory ordering: The read of src will have a happens-before relationship19

with the operation-completion notification actions (future readying, promise20

fulfillment, or persona LPC enlistment). All evaluations sequenced-before this21

call will have a happens-before relationship with the invocation of any LPC22

associated with operation completion.23

UPC++ progress level: internal24

template < typename T,25

typename Completions = decltype (operation_cx :: as_future ())>26

RType rget(global_ptr <T> src , T *dest , std :: size_t count ,27

Completions cxs= Completions {});28

Precondition: T must be Serializable. Addresses in the intervals29

[src, src+count) and [dest, dest+count) must all reference valid objects30

of type T. No object may be referenced by both intervals.31

50 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 8. ONE-SIDED COMMUNICATION

Initiates a transfer of count values of type T beginning at src and stores them1

in the locations beginning at dest. The source values must not be modified2

until operation completion is notified.3

Completions:4

• Operation: Indicates completion of all aspects of the operation, including5

serialization, transfer, and deserialization, and readiness of the resulting6

values.7

C++ memory ordering: The reads of src and writes to dest will have a8

happens-before relationship with the operation-completion notification actions9

(future readying, promise fulfillment, or persona LPC enlistment). All evalua-10

tions sequenced-before this call will have a happens-before relationship with the11

invocation of any LPC associated with operation completion.12

UPC++ progress level: internal13

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 51

Chapter 91

Remote Procedure Call2

9.1 Overview3

UPC++ provides remote procedure calls (RPCs) for injecting function calls into other ranks.4

These injections are one-sided, meaning the recipient is not required to explicitly acknowl-5

edge which functions are expected. Concurrent with a rank’s execution, incoming RPCs6

accumulate in an internal queue managed by UPC++. The only control a rank has over7

inbound RPCs is when it would like to check its inbox for arrived function calls and execute8

them. Draining the RPC inbox is one of the many responsibilities of the progress API (see9

Ch. 10, Progress).10

There are two main flavors of RPC in UPC++: fire-and-forget (rpc ff) and round trip11

(rpc). Each takes a function Func together with variadic arguments Args.12

The rpc_ff call serializes the given function and arguments into a message destined13

for the recipient, and guarantees that this function call will be placed eventually in the14

recipient’s inbox. The round-trip rpc call does the same, but also forces the recipient to15

reply to the sender of the RPC with a message containing the return value of the function,16

providing the value for operation completion of the sender’s invocation of rpc. Thus,17

when the future is ready, the sender knows the recipient has executed the function call.18

Additionally, if the return value of func is a future, the recipient will wait for that future19

to become ready before sending its result back to the sender.20

There are important restrictions on what the permissible types for func and its bound21

arguments can be for RPC functions. First, the Func type must be a function object (has a22

publicly accessible overload of the function call operator, operator()). Second, both the23

Func and all Args... types must be Serializable (see Ch. 6, Serialization).24

52

CHAPTER 9. REMOTE PROCEDURE CALL

9.2 Remote Hello World Example1

Figure 9.1 shows a simple alternative Hello World example where each rank issues an rpc2

to its neighbor, where the last rank wraps around to 0.3

include <upcxx/upcxx.hpp >32

include <iostream >33

void hello_world (intrank_t num){34

std :: cout << "Rank " << num <<" told rank " << upcxx :: rank_me ()35

<< " to say Hello World" << std :: endl;36

}37

int main(int argc , char ** argv []){38

upcxx :: init (); // Start UPC ++ state39

intrank_t remote = (upcxx :: rank_me ()+1)% upcxx :: rank_n ();40

auto f = upcxx :: rpc(remote , hello_world , upcxx :: rank_me ());41

f.wait ();42

upcxx :: finalize (); // Close down UPC ++ state43

return 0;44

}45

Figure 9.1: HelloWorld with Remote Procedure Call

9.3 API Reference4

template < typename Func , typename ... Args >5

void rpc_ff (intrank_t recipient , Func &&func , Args &&... args);6

template < typename Completions , typename Func , typename ... Args >7

RType rpc_ff (intrank_t recipient , Completions cxs ,8

Func &&func , Args &&... args);9

Precondition: Func must be a Serializable type and a function-object type.10

Each of Args... must be a Serializable type, or dist_object<T>&, or team&.11

The call func(args...) must not throw an exception.12

In the first variant, the func and args... are serialized and internally buffered13

before the call returns. The call rpc_ff(rank, func, args...) is equivalent14

to rpc_ff(rank, source_cx::as_buffered(), func, args...).15

In the second variant, if buffered source completion is not requested, the func16

and args... are serialized at an unspecified time between the invocation of17

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 53

UPC++ Specification v1.0 Draft 5

rpc_ff and source completion. The serialized results are retained internally1

until they are eventually sent.2

After their receipt on recipient, the data are deserialized and func(args...)3

is enlisted for execution during user-level progress of the master persona. So4

long as the sending persona continues to make internal-level progress it is guar-5

anteed that the message will eventually arrive at the recipient. See §10.5.36

progress_required for an understanding of how much internal-progress is7

necessary.8

Special handling is applied to those members of args which are either a ref-9

erence to dist_object type (see §13 Distributed Objects) or a team (see §1210

Teams). These are serialized by their dist_id or team_id respectively. The11

recipient deserializes the id’s and waits asynchronously until all of them have a12

corresponding instance constructed on the recipient. When that occurs, func13

is called with the recipient’s instance references in place of those supplied at14

the send site.15

Completions:16

• Source: Indicates completion of serialization of the function object and17

arguments.18

C++ memory ordering: All evaluations sequenced-before this call will have19

a happens-before relationship with the source-completion notification actions20

(future readying, promise fulfillment, or persona LPC enlistment) and the re-21

cipient’s invocation of func.22

UPC++ progress level: internal23

template < typename Func , typename ... Args >24

future_invoke_result_t <Func , Args ...>25

rpc(intrank_t recipient , Func &&func , Args &&... args);26

template < typename Completions , typename Func , typename ... Args >27

RType rpc(intrank_t recipient , Completions cxs ,28

Func &&func , Args &&... args);29

Precondition: Func must be a Serializable type and a function-object type.30

Each of Args... must be either a Serializable type, or dist_object<T>&, or31

team&. Additionally, std::result_of<Func(Args...)>::type must be a Se-32

rializable type or future<T...>, where each type in T... must be Serializable.33

The call func(args...) must not throw an exception.34

54 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 9. REMOTE PROCEDURE CALL

Similar to rpc_ff, this call sends func and args... to be executed remotely,1

but additionally provides an operation-completion event that produces the2

value returned from the remote invocation of func(args...), if it is non-void.3

In the first variant, the func and args... are serialized and internally buffered4

before the call returns. The call rpc(rank, func, args...) is equivalent to5

rpc(rank ,6

source_cx :: as_buffered () | operation_cx :: as_future (),7

func , args ...)8

In the second variant, if buffered source completion is not requested, the func9

and args... are serialized at an unspecified time between the invocation of10

rpc and source completion. The serialized results are retained internally until11

they are eventually sent.12

After their receipt on recipient, the data are deserialized and func(args...)13

is enlisted for execution during user-level progress of the master persona.14

In the first variant, the returned future is readied upon operation completion.15

For futures provided by an operation-completion request, or promises used in16

promise-based operation-completion requests, the type of the future or promise17

must correspond to the return type of func(args...) as follows:18

• If the return type is of the form future<T...>, then a future provided by19

operation completion also has type future<T...>, and promises used in20

operation-completion requests must permit invocation of fulfill_result21

with values of type T....22

• If the return type is some other non-void type T, then a future provided by23

operation completion has type future<T>, and promises used in operation-24

completion requests must permit invocation of fulfill_result with a25

value of type T.26

• If the return type is void, then a future provided by operation completion27

has type future<>, and promises used in operation-completion requests28

may have any type promise<T...>.29

Within user-progress of the recipient’s master persona, the result from invoking30

func(args...) will be immediately serialized and eventually sent back to the31

initiating rank. Upon receipt, it will be deserialized, and operation-completion32

notifications will take place during subsequent user-progress of the initiating33

persona.34

The same special handling applied to dist_object and team arguments by35

rpc_ff is also done by rpc.36

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 55

UPC++ Specification v1.0 Draft 5

Completions:1

• Source: Indicates completion of serialization of the function object and2

arguments.3

• Operation: Indicates completion of all aspects of the operation: serial-4

ization, deserialization, remote invocation, transfer of any result, and de-5

struction of any internally managed values are complete. This completion6

produces a value as described above.7

C++ memory ordering: All evaluations sequenced-before this call will have a8

happens-before relationship with the invocation of func. The return from func,9

will have a happens-before relationship with the operation-completion actions10

(future readying, promise fulfillment, or persona LPC enlistment). For LPC11

completions, all evaluations sequenced-before this call will have a happens-before12

relationship with the execution of the completion function.13

UPC++ progress level: internal14

56 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 101

Progress2

10.1 Overview3

UPC++ presents a highly-asynchronous interface, but guarantees that user-provided call-4

backs will only ever run on user threads during calls to the library. This guarantees a good5

user-visibility of the resource requirements of UPC++, while providing a better interoper-6

ability with other software packages which may have restrictive threading requirements.7

However, such a design choice requires the application developer to be conscientious about8

providing UPC++ access to CPU cycles.9

Progress in UPC++ refers to how the calling application allows the UPC++ internal run-10

time to advance the state of its outstanding asynchronous operations. Any asynchronous11

operation initiated by the user may require the application to give UPC++ access to the exe-12

cution thread periodically until the operation reports its completion. Such access is granted13

by simply making calls into UPC++. Each UPC++ function’s contract to the user contains its14

progress guarantee level. This is described by the members of the upcxx::progress_level15

enumerated type:16

progress level::user UPC++ may advance its internal state as well as signal completion17

of user-initiated operations. This may entail the firing of remotely injected procedure18

calls (RPCs), or readying/fulfillment of futures/promises and the ensuing callback19

cascade.20

progress level::internal UPC++ may advance its internal state, but no notifications21

will be delivered to the application. Thus, an application has very limited ways to22

“observe” the effects of such progress.23

Progress level: none UPC++ will not attempt to advance the progress of asynchronous op-24

erations. (Note this level does not have an explicit entry in the progress_level25

enumerated type).26

57

UPC++ Specification v1.0 Draft 5

The most common progress guarantee made by UPC++ functions is progress level::internal.1

This ensures the delivery of notifications to remote ranks (or other threads) making user-2

level progress in a timely manner. In order to avoid having the user contend with the3

cost associated with callbacks and RPCs being run anytime a UPC++ function is entered,4

progress level::user is purposefully not the common case.5

progress is the notable function enabling the application to make user-level progress.6

Its sole purpose is to look for ready operations involving this rank or thread and run the7

associated RPC/callback code.8

upcxx :: progress (progress_level lev = progress_level :: user)9

UPC++ execution phases which leverage asynchrony heavily tend to follow a particular10

program structure. First, initial communications are launched. Their completion callbacks11

might then perform a mixture of compute or further UPC++ communication with simi-12

lar, cascading completion callbacks. Then, the application spins on upcxx::progress(),13

checking some designated application state which monitors the amount of pending outgo-14

ing/incoming/local work to be done. For the user, understanding which functions perform15

these progress spins becomes crucial, since any invocation of user-level progress may exe-16

cute RPCs or callbacks.17

10.2 Restricted Context18

During user-level progress made by UPC++, callbacks may be executed. Such callbacks19

are subject to restrictions on how they may further invoke UPC++ themselves. We desig-20

nate such restricted execution of callbacks as being in the restricted context. The general21

restriction is stated as:22

User code running in the restricted context must assume that for the duration23

of the context all other attempts at making user-level progress, from any thread24

on any rank, may result in a no-op every time.25

The immediate implication is that a thread which is already in the restricted context26

should assume no-op behavior from further attempts at making progress. This makes it27

pointless to try and wait for UPC++ notifications from within restricted context since there28

is no viable mechanism to make the notifications visible to the user. Thus, calling any29

routine which spins on user-level progress until some notification occurs will likely hang30

the thread.31

58 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 10. PROGRESS

10.3 Attentiveness1

Many UPC++ operations have a mechanism to signal completion to the application. How-2

ever, a performance-oriented application will need to be aware of an additional asyn-3

chronous operation status indicator called progress-required. This status indicates that for4

a particular operation further advancements of the current rank or thread’s internal-level5

progress are necessary so that completion regarding remote entities (e.g. notification of6

delivery) can be reached. Once an operation has left the progress-required state, UPC++7

guarantees that remote entities will see their side of the operations’ completion without8

any further progress by the current compute resource. Applications will need to leverage9

this information for performance, as it is inadvisable for a compute resource to become10

inattentive to UPC++ progress (e.g. long bouts of arithmetic-heavy computation) while11

other entities depend on operations that require further servicing.12

As said previously, nearly all UPC++ operations track their completion individually.13

However, it is not possible for the programmer to query UPC++ if individual operations14

no longer require further progress. Instead, the user may ask UPC++ when all operations15

initiated by this rank have reached a state at which they no longer require progress. This16

is achieved by using the following functions:17

bool upcxx :: progress_required ();18

void upcxx :: discharge ();19

The progress_required function reports whether this rank requires progress, allowing20

the application to know that there are still pending operations that will not achieve remote21

completion without further advancements to internal progress. This is of particular22

importance before an application enters a lapse of inattentiveness (for instance, performing23

expensive computations) in order to prevent slowing down remote entities.24

The discharge function allows an application to ensure that UPC++ does not require25

progress anymore. It is equivalent to the following:26

void upcxx :: discharge () {27

while(upcxx :: progress_required ())28

upcxx :: progress (upcxx :: progress_level :: internal);29

}30

A well-behaved UPC++ application is encouraged to call discharge before any long lapse31

of attentiveness to progress.32

10.4 Thread Personas/Notification Affinity33

As explained in Chapter 5 Futures and Promises, futures require careful consideration34

when used in the presence of thread concurrency. It is crucial that UPC++ is very explicit35

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 59

UPC++ Specification v1.0 Draft 5

about how a multi-threaded application can safely use futures returned by UPC++ calls.1

The most important thing an application has to be aware of is which thread UPC++2

will use to signal completion of a given future. It is therefore extremely important to3

know that UPC++ will use the same thread to which the future was returned by the UPC++4

operation (i.e. the thread which invoked the operation in the first place). This means5

that the thread which invoked a future-returning operation will be the only one able to6

see that operation’s completion. As UPC++ triggers futures only during a call which makes7

user-level progress, the invoking thread must continue to make such progress calls until8

the future is satisfied. This requirement has the drawback of banning the application from9

doing the following: initiating a future-returning operation on one thread, allowing that10

thread to terminate or become permanently inattentive (e.g. sleeping in a thread pool),11

and expecting a different thread to receive the future’s completion. This section will focus12

on two ways the application can still attain this use-case.13

The notion of “thread” has been used in a loose fashion throughout this document,14

the natural interpretation being an operating system (OS) thread. More precisely, this15

document uses the notion of “thread” to denote a UPC++ device referred to as thread persona16

which generalizes the notion of operating system threads.17

A UPC++ thread persona is a collection of UPC++-internal state usually attributed to a18

single thread. By making it a proper construct, UPC++ allows a single OS thread to switch19

between multiple application-defined roles for processing notifications. Personas act as the20

receivers for notifications generated by the UPC++ runtime.21

Values of type upcxx::persona are non-copyable, non-moveable objects which the22

application can instantiate as desired. For each OS thread, UPC++ internally maintains23

a stack of active persona references. The top of this stack is the current persona. All24

asynchronous UPC++ operations will have their notification events (signaling of futures or25

promises) sent to the current persona of the OS thread invoking the operation. Calls that26

make user-level progress will process notifications destined to any of the active personas of27

the invoking thread. The initial state of the persona stack consists of a single entry pointing28

to a persona created by UPC++ which is dedicated to the current OS thread. Therefore,29

if the application never makes any use of the persona API, notifications will be processed30

solely by the OS thread that initiates the operation.31

Pushing and popping personas from the persona stack (hence changing the current32

persona) is done with the upcxx::persona_scope type.33

namespace upcxx {34

35

struct persona_scope {36

// Make ‘p‘ the new current persona for this OS thread .37

persona_scope (persona &p);38

39

// Acquire ‘lock ‘, then make ‘p‘ the new current persona for40

60 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 10. PROGRESS

// this OS thread .1

template < typename Lock >2

persona_scope (Lock &lock , persona &p);3

4

// Pop ‘p‘ from persona stack , release ‘lock ‘ if any.5

// Calling thread must be same for constructor and destructor .6

˜ persona_scope ();7

};8

9

persona_scope & top_persona_scope ();10

11

persona_scope & default_persona_scope ();12

13

bool progress_required (persona_scope &ps = top_persona_scope ());14

15

void discharge (persona_scope &ps = top_persona_scope ());16

17

} // namespace upcxx18

// Example demonstrating persona_scope .19

20

upcxx :: persona scheduler_persona ;21

std :: mutex scheduler_lock ;22

23

{ // Scope block delimits domain of persona_scope instance .24

auto scope = upcxx :: persona_scope (scheduler_lock , scheduler_persona);25

26

// All following upcxx actions will use ‘scheduler_persona ‘27

// as current .28

29

// ...30

31

// ‘scope ‘ destructs :32

// - ‘scheduler_persona ‘ dropped from active set if it33

// wasn ’t active before the scope ’s construction .34

// - Previously current persona revived .35

// - Lock released .36

}37

Since UPC++ will assume an OS thread has exclusive access to all of its active personas,38

it is the user’s responsibility to ensure that no OS threads share an active persona concur-39

rently. The use of the persona_scope constructor, which takes a lock-like synchronization40

primitive, is strongly encouraged to facilitate in enforcing this invariant.41

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 61

UPC++ Specification v1.0 Draft 5

There are two ways that asynchronous operations can be initiated by a given OS thread1

but retired in another. The first solution is simple:2

1. The user defines a persona P.3

2. Thread 1 activates P, initiates the asynchronous operation, and releases P.4

3. Thread 1 synchronizes with Thread 2, indicating the operation has been initiated.5

4. Thread 2 activates P, spins on progress until the operation completes.6

Care must be taken that any futures created by phase 2 are never altered (uttered)7

concurrently. The same synchronization that was used to enforce exclusivity of persona8

acquisition can be leveraged to protect the future as well.9

While this technique achieves our goal of different threads initiating and resolving10

asynchronous operations, it fails a different but also desirable property. It is often desirable11

to allow multiple threads to issue communication concurrently while delegating a separate12

thread to handle the notifications. To achieve this, it is clear that multiple personas are13

needed. Indeed, the exclusivity of a persona being current to only one OS thread prevents14

the application from concurrent initiation of communication.15

In order to issue operations and concurrently retire them in a different thread, the user16

is strongly encouraged to use the callback-oriented API calls of UPC++ as opposed to the17

future or promise variants. An example of such a variant is:18

template < typename T, typename CompletionFunc >19

void upcxx :: rput(T const *src , global_ptr <T> dest , std :: size_t count ,20

persona & completion_recipient ,21

CompletionFunc completion_func);22

In addition to the arguments necessary for the particular operation, the callback API23

takes a persona reference and a C++ function object (lambda, etc.) such that upon comple-24

tion of the operation, the designated persona shall execute the function object during its25

user-level progress. Using the callback API, it is simple to have multiple threads initiating26

communication concurrently with a designated thread receiving the completion notifica-27

tions. To achieve this, each operation is initiated by a thread using the agreed-upon28

persona of the receiver thread together with a callback that will incorporate knowledge of29

completion into the receiver’s state.30

10.5 API Reference31

62 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 10. PROGRESS

enum class progress_level {1

/*none , -- not an actual member , conceptual only */2

internal ,3

user4

};5

void upcxx :: progress (progress_level lev = progress_level :: user);6

This call will always attempt to advance internal progress.7

If lev == progress_level::user then this thread is also used to execute any8

available user actions for the personas currently active. Actions include:9

1. Either future-readying or promise-fulfilling completion notifications for10

asynchronous operations initiated by one of the active personas. By the11

execution model of futures and promises this can induce callback cascade.12

2. Continuation-style completion notifications from operations initiated by13

any persona but designating one of the active personas as the completion14

recipient.15

3. RPCs destined for this rank but only if the master persona is among the16

active set.17

4. lpc’s destined for any of the active personas.18

UPC++ progress level: internal or user19

10.5.1 persona20

class persona ;21

C++ Concepts: DefaultConstructible, Destructible22

persona :: persona ();23

Constructs a persona object with no enqueued operations.24

This function may be called when UPC++ is in the uninitialized state.25

persona ::˜ persona ();26

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 63

UPC++ Specification v1.0 Draft 5

Destructs this persona object. If this persona is a member of any thread’s1

persona stack, the result of this call is undefined. If any operations are currently2

enqueued on this persona, or if any operations initiated by this persona require3

further progress, the result of this call is undefined.4

This function may be called when UPC++ is in the uninitialized state.5

template < typename Func >6

void persona :: lpc_ff (Func func);7

Precondition: Func must be a function-object type that can be invoked on zero8

arguments, and the call func() must not throw an exception.9

std::move’s func into an unordered collection of type-erased function objects10

to be executed during user-level progress of the targeted (this) persona. This11

function is thread-safe, so it may be called from any thread to enqueue work12

for this persona.13

C++ memory ordering: All evaluations sequenced-before this call will have a14

happens-before relationship with the invocation of func.15

UPC++ progress level: none16

template < typename Func >17

future_invoke_result_t <Func > persona :: lpc(Func func);18

Precondition: Func must be a function-object type that can be invoked on zero19

arguments, and the call func() must not throw an exception.20

std::move’s func into an unordered collection of type-erased function objects21

to be executed during user-level progress of the targeted (this) persona. The22

return value of func is asynchronously returned to the currently active persona23

in a future. If the return value of func is a future, then the targeted persona will24

wait for that future before signaling the future returned by lpc with its value.25

This function is thread-safe, so it may be called from any thread to enqueue26

work for this persona. Note that the future returned by lpc is considered to27

be owned by the currently active persona, the future returned by func (if any)28

will be considered owned by the target (this) persona.29

C++ memory ordering: All evaluations sequenced-before this call will have a30

happens-before relationship with the invocation of func, and the invocation of31

func will have a happens-before relationship with evaluations sequenced after32

the signaling of the final future.33

UPC++ progress level: none34

64 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 10. PROGRESS

persona & master_persona ();1

Returns a reference to the master persona automatically instantiated by the2

UPC++ runtime. The thread that executes upcxx::init implicitly acquires this3

persona as its current persona. The master persona is special in that it is the4

only one which will execute RPCs destined for this rank. Additionally, some5

UPC++ functions may only be called by a thread with the master persona in its6

active stack.7

UPC++ progress level: none8

persona & current_persona ();9

Returns a reference to the persona on the top of the thread’s active persona10

stack.11

UPC++ progress level: none12

persona & default_persona ();13

Returns a reference to the persona instantiated automatically and uniquely for14

this OS thread. The default persona is always the bottom of and can never be15

removed from its designated OS thread’s active stack.16

UPC++ progress level: none17

void liberate_master_persona ()18

Precondition: This thread must be the one which called upcxx::init, it must19

have not altered its persona stack since calling init, and it must not have20

called this function already since calling init.21

The thread which invokes upcxx::init implicitly has the master persona at22

the top of its active stack, yet the user has no persona_scope to drop to allow23

other threads to acquire the persona. Thus, if the user intends for other threads24

to acquire the master persona, they should have the init-calling thread release25

the persona with this function so that it can be claimed by persona_scope’s.26

Generally, if this function is ever called, it is done soon after init and then the27

master persona should be reacquired by a persona_scope.28

UPC++ progress level: none29

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 65

UPC++ Specification v1.0 Draft 5

10.5.2 persona scope1

class persona_scope ;2

C++ Concepts: Destructible, MoveConstructible3

persona_scope :: persona_scope (persona &p);4

Precondition: Excluding this thread, p is not a member of any other thread’s5

active stack.6

Pushes p onto the top of the calling OS thread’s active persona stack.7

UPC++ progress level: none8

template < typename Mutex >9

persona_scope :: persona_scope (Mutex &mutex , persona &p);10

C++ Concepts of Mutex: Mutex11

Precondition: p will only be a member of some thread’s active stack if that12

thread holds mutex in a locked state.13

Invokes mutex.lock(), then pushes p onto the OS thread’s active persona14

stack.15

UPC++ progress level: none16

persona_scope ::˜ persona_scope ();17

Precondition: All persona_scope’s constructed on this thread since the con-18

struction of this instance have since destructed.19

The persona supplied to this instance’s constructor is popped from this thread’s20

active stack. If this instance was constructed with the mutex constructor, then21

that mutex is unlocked.22

UPC++ progress level: none23

persona_scope & top_persona_scope ();24

Reference to the most recently constructed but not destructed persona_scope25

for this thread. Every thread begins with an implicitly instantiated scope point-26

ing to its default persona that survives for the duration of the thread’s lifetime.27

UPC++ progress level: none28

66 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 10. PROGRESS

persona_scope & default_persona_scope ();1

Every thread begins with an implicitly instantiated scope pointing to its default2

persona that survives for the duration of the thread’s lifetime. This function3

returns a reference to that bottommost persona_scope for the calling thread,4

which points at the calling thread’s default_persona().5

UPC++ progress level: none6

10.5.3 Outgoing Progress7

bool progress_required (persona_scope &ps = top_persona_scope ());8

Precondition: ps has been constructed by this thread.9

For the set of personas included in this thread’s active stack section bounded10

inclusively between ps and the current top, nearly answers if any UPC++ op-11

erations initiated by those personas require further advancement of internal-12

progress of their respective personas before their completion events will be13

eventually available to user-level progress on the destined ranks. The exact14

meaning of the return value depends on which personas are selected by ps:15

• If ps does not include the master persona: A return value of true means16

that one or more of the personas indicated by ps requires further internal-17

progress to achieve completion of its outgoing operations. A value of false18

means that none of the personas indicated by ps require internal-progress,19

but internal-progress of the master persona might still be required.20

• If ps does include the master persona: A return value of true means that21

one or more of the personas indicated by ps requires further internal-22

progress to achieve completion of its outgoing operations. A return value23

of false means that none of the non-master personas indicated by ps24

requires further internal-progress, but the master persona may or may not25

require further internal-progress.26

UPC++ progress level: none27

void discharge (persona_scope &ps = top_persona_scope ());28

Advances internal-progress enough to ensure that progress_required(ps) re-29

turns false.30

UPC++ progress level: internal31

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 67

Chapter 111

Atomics2

11.1 Overview3

UPC++ supports atomic operations on shared memory locations. Atomicity entails that a4

read-modify-write sequence on a memory location will happen without interference or inter-5

leaving with other concurrently executing atomic operations. Atomicity is not guaranteed6

if a memory location is concurrently targeted by both atomic and non-atomic operations.7

The order in which concurrent atomics update the same memory is not guaranteed, not8

even for successively issued operations by a single rank. Ordering of atomics with respect9

to other asynchronous operations is also not guaranteed. The only means to ensure such10

ordering is by waiting for one operation to complete before initiating its successor.11

At this time, it is unclear how UPC++ will support mixing of atomic and non-atomic12

accesses to the same memory location. Until this is resolved, users must assume that13

for the duration of the program, once a memory location is accessed via a UPC++ atomic,14

only further atomic operations to that location will have meaningful results (note that even15

global barrier synchronization does not grant an exception to this rule). This unfortunately16

implies that deallocation of such memory is unsafe, as that would allow the memory to be17

reallocated to a context unaware of its constrained condition.18

Each atomic operation works on a global pointer of an approved atomic type. Cur-19

rently, the approved atomic types are a subset of fundamental integer types, specifically:20

std::int32_t, std::uint32_t, std::int64_t, and std::uint64_t. All atomic opera-21

tions are non-blocking and provide an operation-completion event to indicate completion22

of the atomic. UPC++ currently supports only a limited set of operations: get, put, and23

fetch-and-add.24

11.2 API Reference25

68

CHAPTER 11. ATOMICS

template < typename T,1

typename Completions = decltype (operation_cx :: as_future ())>2

RType atomic_get (global_ptr <T> p, std :: memory_order order ,3

Completions cxs= Completions {});4

Precondition: T must be one of the approved atomic types. p must reference a5

valid object of type T. T must be the only type used by any atomic referencing6

any part of p’s target memory for the entire lifetime of UPC++. order must be7

std::memory_order_relaxed or std::memory_order_acquire.8

Initiates an atomic read of the object at location p and produces its value as9

part of operation completion.10

Completions:11

• Operation: Indicates completion of all aspects of the operation: the remote12

atomic read and transfer of the result are complete. This completion13

produces a value of type T.14

C++ memory ordering: If order is std::memory_order_acquire then the15

read performed will have a happens-before relationship with the operation-16

completion notification actions (future readying, promise fulfillment, or persona17

LPC enlistment).18

UPC++ progress level: internal19

template < typename T,20

typename Completions = decltype (operation_cx :: as_future ())>21

RType atomic_put (global_ptr <T> p, T val ,22

std :: memory_order order ,23

Completions cxs= Completions {});24

Precondition: T must be one of the approved atomic types. p must reference a25

valid object of type T. T must be the only type used by any atomic referencing26

any part of p’s target memory for the entire lifetime of UPC++. order must be27

std::memory_order_relaxed or std::memory_order_release.28

Initiates an atomic write of val to the location p. Completion of the write is29

indicated by operation completion.30

Completions:31

• Operation: Indicates completion of all aspects of the operation: the trans-32

fer of the value and remote atomic store are complete.33

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 69

UPC++ Specification v1.0 Draft 5

C++ memory ordering: If order is std::memory_order_release then all eval-1

uations sequenced-before this call will have a happens-before relationship with2

the write performed. The write performed will have a happens-before rela-3

tionship with the operation-completion notification actions (future readying,4

promise fulfillment, or persona LPC enlistment).5

UPC++ progress level: internal6

template < typename T,7

typename Completions = decltype (operation_cx :: as_future ())>8

RType atomic_fetch_add (global_ptr <T> p, T val ,9

std :: memory_order order ,10

Completions cxs= Completions {});11

Precondition: T must be one of the approved atomic types. p must refer-12

ence a valid object of type T. T must be the only type used by any atomic13

referencing any part of p’s target memory for the entire lifetime of UPC++.14

order must be std::memory_order_relaxed, std::memory_order_acquire,15

std::memory_order_release, or std::memory_order_acq_rel.16

Initiates the atomic read-modify-write operation consisting of: reading the17

value of the object located at p, adding val to it, and writing the new value18

back. The value produced by operation completion is the one initially read.19

Completions:20

• Operation: Indicates completion of all aspects of the operation: the trans-21

fer of the given value to the recipient, remote atomic update, and transfer22

of the old value to the initiator are complete. This completion produces a23

value of type T.24

C++ memory ordering: If order is either std::memory_order_release or25

std::memory_order_acq_rel then all evaluations sequenced-before this call26

will have a happens-before relationship with the atomic action. If order is27

std::memory_order_acquire or std::memory_order_acq_rel then the atomic28

action will have a happens-before relationship with the operation-completion29

notification actions (future readying, promise fulfillment, or persona LPC en-30

listment).31

UPC++ progress level: internal32

70 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 121

Teams2

12.1 Overview3

UPC++ provides teams as a means of grouping ranks. UPC++ uses teams for collective op-4

erations. team construction is collective and should be considered moderately expensive5

and done as part of the set-up phase of a calculation. teams are similar to MPI Groups6

and the default team is world(). teams are considered special when it comes to serial-7

ization. Each team has a unique team_id that is equal across the team and acts as an8

opaque handle. Any rank that is a member of the team can retrieve the team object with9

the team_id::here() function. Hence, coordinating ranks can reference specific teams by10

their team_id.11

While a rank within a UPC++ SPMD program can have multiple intrank_t values that12

represent their relative placement in several teams, it is the intrank_t in the world() that13

is used in all UPC++ functions, unless otherwise specifically noted. For example, broadcast14

uses the team-relative rank.15

12.2 Local Teams16

Each rank can obtain a reference to a special team by calling local team. global ptr’s to17

objects allocated by ranks within this team will report is_local() == true and local()18

will return a valid T* to that memory. The global ptr where() function will report the19

rank (in team world()) that originally acquired that memory using the functions in chapter20

4. It is not guaranteed that the T*’s obtained by different ranks to the same shared object21

will have bit-wise identical pointer values. In the general case, peers may have different22

virtual addresses for the same physical memory.23

71

UPC++ Specification v1.0 Draft 5

12.3 API Reference1

12.3.1 team2

class team;3

C++ Concepts: MoveConstructible, Destructible4

intrank_t team :: rank_n () const;5

Returns the number of ranks that are in the given team.6

UPC++ progress level: none7

intrank_t team :: rank_me () const;8

Returns the peer index of the caller in the given team.9

UPC++ progress level: none10

intrank_t team :: operator [](intrank_t peer_index) const;11

Precondition: peer_index >= 0 and peer_index < rank_n().12

Returns the index in the world() team for the rank associated with peer_index13

in this team.14

UPC++ progress level: unspecified between none and internal15

intrank_t team :: from_world (intrank_t world_index) const;16

intrank_t team :: from_world (intrank_t world_index ,17

intrank_t otherwise) const;18

Precondition: world_index >= 0 and world_index < world().rank_n(). For19

the single argument overload, the rank associated with world_index must be20

a member of this team.21

Returns the peer index in this team of the rank associated with world_index in22

the world() team. For the two argument overload, if the rank is not a member23

of this team then the value of otherwise is returned.24

UPC++ progress level: unspecified between none and internal25

72 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 12. TEAMS

team team :: split(intrank_t color , intrank_t key);1

Precondition: This function must be called collectively by all the ranks in this2

team, and it must be called by the thread that has the master persona (§10.5.1).3

No two ranks in the collective call may specify the same combination of color4

and key.5

Splits the given team into subteams based on the color and key arguments.6

All ranks that call the function with the same color value will be separated7

into the same subteam. Ranks in the same subteam will be numbered according8

to their position in the sequence of sorted key values. The return value is the9

team representing the calling rank’s new subteam. This call will invoke user-10

level progress, so the caller may expect incoming RPCs to fire before it returns.11

C++ memory ordering: With respect to all threads participating in this col-12

lective, all evaluations which are sequenced-before their respective thread’s in-13

vocation of this call will have a happens-before relationship with all evaluations14

sequenced after the call.15

UPC++ progress level: user16

team :: team(team && other);17

Precondition: Calling thread must have the master persona.18

Makes this instance the calling rank’s representative of the team associated with19

other, transferring all state from other. Invalidates other, and any subsequent20

operations on other, except for destruction, produce undefined behavior.21

UPC++ progress level: none22

team ::˜ team ();23

Precondition: Calling thread must have the master persona.24

If this instance has not been invalidated by being passed to the move construc-25

tor, then this will destroy the current rank’s state associated with the team.26

Further lookups on this rank using the team_id corresponding to this team will27

have undefined behavior. If this instance has been invalidated by a move, then28

this call will have no effect.29

UPC++ progress level: none30

team_id team ::id() const;31

Returns the universal name associated with this team.32

UPC++ progress level: none33

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 73

UPC++ Specification v1.0 Draft 5

12.3.2 team id1

class team_id ;2

C++ Concepts: PODType, EqualityComparable, LessThanComparable, hash-3

able4

A universal name representing a team.5

team& team_id :: here () const;6

Precondition: The current rank must be a member of the team associated with7

this name, and it must have completed creation of the team.8

Retrieves a reference to the team instance associated with this name.9

UPC++ progress level: none10

future <team &> team_id :: when_here () const;11

Precondition: The current rank must be a member of the team associated with12

this name. The calling thread must have the master persona.13

Retrieves a future representing when the current rank constructs the team cor-14

responding to this name.15

UPC++ progress level: none16

12.3.3 Fundamental Teams17

team& world ();18

Returns a reference to the team representing all the ranks in the program. The19

result is undefined if a move is performed on the returned team.20

UPC++ progress level: none21

intrank_t rank_n ();22

Returns the number of ranks that are in the world team.23

Equivalent to: world().rank_n().24

UPC++ progress level: none25

74 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 12. TEAMS

intrank_t rank_me ();1

Returns the peer index of the caller in the world team.2

Equivalent to: world().rank_me().3

UPC++ progress level: none4

team& local_team ();5

Returns a reference to the local team containing this rank. A local team rep-6

resents a set of ranks which share physical memory (§12.2). The result is7

undefined if a move is performed on the returned team.8

UPC++ progress level: none9

bool local_team_contains (intrank_t world_index);10

Precondition: world_index >= 0 and world_index < world().rank_n().11

Determines if world_index is a member of the local team containing the this12

rank (§12.2).13

Equivalent to: local_team().from_world(world_index,-1) >= 014

UPC++ progress level: none15

12.3.4 Collectives16

void barrier (team &team = world ());17

Precondition: This function must be called collectively by all the ranks in the18

given team, and it must be called by the thread that has the master persona19

(§10.5.1).20

Performs a barrier operation over the given team. The call will not return until21

all ranks in the team have entered the call. There is no implied relationship22

between this call and other in-flight operations. This call will invoke user-level23

progress, so the caller may expect incoming RPCs to fire before it returns.24

C++ memory ordering: With respect to all threads participating in this col-25

lective, all evaluations which are sequenced-before their respective thread’s in-26

vocation of this call will have a happens-before relationship with all evaluations27

sequenced after the call.28

UPC++ progress level: user29

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 75

UPC++ Specification v1.0 Draft 5

template < typename Completions = decltype (operation_cx :: as_future ())>1

RType barrier_async (team &team = world (),2

Completions cxs= Completions {});3

Precondition: This function must be called collectively by all the ranks in the4

given team, and it must be called by the thread that has the master persona5

(§10.5.1).6

Initiates an asynchronous barrier operation over the given team. The call will7

return without waiting for other ranks to make the call. Operation completion8

will be signaled after all other ranks in the team have entered the call.9

Completions:10

• Operation: Indicates completion of the collective from the viewpoint of11

the caller, implying that all ranks in the given team have entered the12

collective.13

C++ memory ordering: With respect to all threads participating in this col-14

lective, all evaluations which are sequenced-before their respective thread’s in-15

vocation of this call will have a happens-before relationship with all evaluations16

sequenced after the operation-completion notification actions (future readying,17

promise fulfillment, or persona LPC enlistment).18

UPC++ progress level: internal19

template < typename T, typename BinaryOp ,20

typename Completions = decltype (operation_cx :: as_future ())>21

RType allreduce (T && value , BinaryOp &&op , team &team = world (),22

Completions cxs= Completions {});23

Precondition: This function must be called collectively by all the ranks in the24

given team, and it must be called by the thread that has the master persona25

(§10.5.1). T must be Serializable. BinaryOp must be a function-object type26

representing an associative and commutative mathematical operation taking27

two values of type T and returning a value implicitly convertible to T. BinaryOp28

must be referentially transparent and concurrently invocable. BinaryOp may29

not invoke any UPC++ routine with a progress level other than none.30

Performs a reduction operation over the ranks in the given team. If the team31

contains only a single rank, then the resulting operation completion will produce32

value. Otherwise, initiates an asynchronous reduction over the values provided33

by each rank. The reduction is performed in some non-deterministic order by34

76 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 12. TEAMS

applying op to combine values and intermediate results. Each rank receives the1

result of the reduction as part of operation completion.2

Completions:3

• Operation: Indicates completion of the collective from the viewpoint of4

the caller, implying that the result of the reduction is available at this5

rank. This completion produces a value of type T.6

C++ memory ordering: With respect to all threads participating in this col-7

lective, all evaluations which are sequenced-before their respective thread’s in-8

vocation of this call will have a happens-before relationship with all evaluations9

sequenced after the operation-completion notification actions (future readying,10

promise fulfillment, or persona LPC enlistment).11

UPC++ progress level: internal12

template < typename T,13

typename Completions = decltype (operation_cx :: as_future ())>14

RType broadcast (T && value , intrank_t sender ,15

team &team = world (),16

Completions cxs= Completions {});17

18

template < typename T,19

typename Completions = decltype (operation_cx :: as_future ())>20

RType broadcast (T *buffer , std :: size_t count ,21

intrank_t sender , team &team = world (),22

Completions cxs= Completions {});23

Precondition: The function must be called collectively by the ranks in the24

given team, and it must be called by the thread that has the master persona25

(§10.5.1). The value of sender, and count in the second variant, must be the26

same across all callers. In the second variant, the addresses in the interval27

[buffer,buffer+count) must all reference valid objects of type T. The type28

T must be Serializable.29

Initiates an asynchronous broadcast (one-to-all) operation, with rank sender30

of team acting as the producer of the broadcast. In the first variant, value31

will be asynchronously sent to all ranks in the team, encapsulated in operation32

completion, which will be signaled upon receipt of the value. In the second33

variant, the objects in [buffer,buffer+count) on rank sender are sent to the34

addresses [buffer,buffer+count) provided by the receiving ranks. Operation35

completion signals completion of the operation with respect to the calling rank.36

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 77

UPC++ Specification v1.0 Draft 5

For the sender, this indicates that the given buffer is available for reuse, and1

for a receiver, it indicates that the data have been received in its buffer.2

Completions:3

• Operation: In the first variant, indicates that the value provided by the4

sender is available at the caller. This completion produces a value of type5

T.6

In the second variant, indicates completion of the collective from the view-7

point of the caller as described above.8

C++ memory ordering: With respect to all threads participating in this col-9

lective, all evaluations which are sequenced-before the producing thread’s invo-10

cation of this call will have a happens-before relationship with all evaluations11

sequenced after the operation-completion notification actions (future readying,12

promise fulfillment, or persona LPC enlistment).13

UPC++ progress level: internal14

78 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 131

Distributed Objects2

13.1 Overview3

In distributed-memory parallel programming, the concept of a single logical object parti-4

tioned over several ranks is a useful capability in many contexts: for example, geometric5

meshes, vectors, matrices, tensors, and associative maps. Since UPC++ is a communication6

library, it strives to focus on the mechanisms of communication as opposed to the various7

programming idioms for managing distribution. However, a basic framework for users to8

implement their own distributed objects is useful and also enables UPC++ to provide the9

user with the following valuable features:10

1. Universal distributed object naming: per-object names that can be transmitted to11

other ranks while retaining their meaning.12

2. Name-to-this mapping: Mapping between the universal name and the current rank’s13

memory address holding that distributed object’s state for the rank (the current14

rank’s this pointer).15

The need for universal distributed object naming stems primarily from RPC-based com-16

munication. If one rank needs to remotely invoke code on a peer’s partition of a distributed17

object, there needs to be some mutually agreeable identifier for referring to that distributed18

object. For simplicity, this identifier value should be: identical across all ranks so that it19

may be freely communicated while maintaining its meaning. Moreover, the name should20

be TriviallyCopyable so that it may be serialized into RPCs efficiently (including with the21

auto-capture [=] lambda syntax), hashable, and comparable so that it works well with22

standard C++ containers. UPC++ provides distributed object names meeting these criteria23

as well as the registry for mapping names to and from the current rank’s partition of the24

distributed object.25

79

UPC++ Specification v1.0 Draft 5

13.2 Building Distributed Objects1

Distributed objects are built with the upcxx::dist_object<T> type. For all ranks in a2

given team, each rank constructs an instance of dist_object<T>, supplying a value of type3

T representing this rank’s instance value. All ranks in the team must call this constructor4

collectively. Once construction completes, the distributed object has a universal name5

which can be used on any rank in the team to locate the resident instance. When the6

dist_object<T> is destructed the T value is also destructed. At this point the name7

will cease to carry meaning on this rank. Thus, the programmer should ensure that no8

rank destructs a distributed object until all name lookups destined for it complete and all9

hanging references of the form T& or T* to the value have expired.10

The names of dist_object<T>’s are encoded by the dist_id<T> type. This type11

is TriviallyCopyable, EqualityComparable, LessThanComparable, hashable, and trivially12

Serializable. It has the members .here() and .when_here() for retrieving the resident13

dist_object<T> instance registered with the name.14

13.3 Ensuring Distributed Existence15

The dist_object<T> constructor requires it be called in a collective context, but it does16

not guarantee that, after the call, all other ranks in the team have exited or even reached17

the constructor. Thus users are required to guard against the possibility that when an RPC18

carrying an distributed object’s name executes, the recipient rank may not yet have an19

entry for that name in its registry. Possible ways to deal with this include:20

1. Barrier: Before issuing communication containing a dist_id<T> for a newly created21

distributed object, the relevant team completes a barrier to ensure global existence22

of the dist_object<T>.23

2. Point to point: Before communicating a dist_id<T> with a given rank, the initiat-24

ing rank uses some two-party protocol to ensure that the peer has constructed the25

dist_object<T>.26

3. Asynchronous point-to-point: The user performs no synchronization to ensure remote27

existence. Instead, an RPC is sent which, upon arrival, must wait asynchronously via28

a continuation for the peer to construct the distributed object.29

UPC++ enables the asynchronous point-to-point approach implicitly when dist_object<T>&30

arguments are given to any of the RPC family of functions (see Ch. 9).31

80 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 13. DISTRIBUTED OBJECTS

13.4 API Reference1

template < typename T>2

struct dist_object <T>;3

C++ Concepts: MoveConstructible, Destructible4

template < typename T>5

dist_object <T >:: dist_object (T value , team &team = world ());6

Precondition: Calling thread must have the master persona.7

Constructs this rank’s member of the distributed object identified by the col-8

lective calling context across team. The initial value for this rank is given9

in value. The future returned from dist_id<T>::when_here for the corre-10

sponding dist_id<T> will be readied during this constructor. This implies11

that continuations waiting for that future will execute before the constructor12

returns.13

UPC++ progress level: none14

template < typename T>15

template < typename ... Arg >16

dist_object <T >:: dist_object (team &team , Arg &&... arg);17

Precondition: Calling thread must have the master persona.18

Constructs this rank’s member of the distributed object identified by the col-19

lective calling context across team. The initial value for this rank is constructed20

with T(std::forward<Arg>(arg)...). The result is undefined if this call21

throws an exception. The future returned from dist_id<T>::when_here for22

the corresponding dist_id<T> will be readied during this constructor. This23

implies that continuations waiting for that future will execute before the con-24

structor returns.25

UPC++ progress level: none26

template < typename T>27

dist_object <T >:: dist_object (dist_object <T> && other);28

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 81

UPC++ Specification v1.0 Draft 5

Precondition: Calling thread must have the master persona.1

Makes this instance the calling rank’s representative of the distributed object2

associated with other, transferring all state from other. Invalidates other, and3

any subsequent operations on other, except for destruction, produce undefined4

behavior.5

UPC++ progress level: none6

template < typename T>7

dist_object <T >::˜ dist_object ();8

Precondition: Calling thread must have the master persona.9

If this instance has not been invalidated by being passed to the move construc-10

tor, then this will destroy the current rank’s member of the distributed object.11

˜T() will be invoked on the resident instance, and further lookups on this rank12

using the dist_id<T> corresponding to this distributed object will have unde-13

fined behavior. If this instance has been invalidated by a move, then this call14

will have no effect.15

UPC++ progress level: none16

template < typename T>17

dist_id <T> dist_object <T >:: id () const;18

Returns the dist_id<T> representing the universal name of this distributed19

object.20

UPC++ progress level: none21

template < typename T>22

T* dist_object <T >:: operator ->() const;23

Access to the current rank’s value instance for this distributed object.24

UPC++ progress level: none25

template < typename T>26

T& dist_object <T >:: operator *() const;27

Access to the current rank’s value instance for this distributed object.28

UPC++ progress level: none29

82 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 13. DISTRIBUTED OBJECTS

template < typename T>1

struct dist_id <T>;2

C++ Concepts: PODType, EqualityComparable, LessThanComparable, hash-3

able4

template < typename T>5

future < dist_object <T>&> dist_id <T >:: when_here () const;6

Precondition: The current rank’s dist_object<T> instance associated with this7

name must not have been destroyed. The calling thread must have the master8

persona.9

Retrieves a future representing when the current rank constructs the dist_object<T>10

corresponding to this name.11

UPC++ progress level: none12

template < typename T>13

dist_object <T>& dist_id <T >:: here () const;14

Precondition: The current rank’s dist_object<T> instance associated with15

this name must be alive. The calling thread must have the master persona.16

Retrieves a reference to the current rank’s dist_object<T> instance associated17

with this name.18

UPC++ progress level: none19

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 83

Chapter 141

Non-Contiguous One-Sided2

Communication3

14.1 Overview4

UPC++ provides functions to perform one-sided communications similar to rget and rput5

which are dedicated to handle data stored in non-contiguous buffers.6

These functions are denoted with the fragmented keyword, and take two sequences of7

std::pair (or more generally std::tuple) describing how source and destination frag-8

mented buffers should be accessed.9

Figure 14.1: Example of a 3-D strided transfer, with associated metadata

84

CHAPTER 14. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

The most general version of the API requires each std::pair to contain a local or1

global pointer to a memory location in the first member while the second member contains2

the size of the contiguous chunk of memory to be transferred.3

A second set of functions targets identical chunk sizes, thus requiring the user to provide4

pointers only. These functions are denoted by the regular keyword.5

Finally, the third set of functions provide an API for strided accesses starting from6

two given source and destination addresses. An example of such a transfer is depicted in7

Figure 14.1. These are denoted by the strided keyword.8

14.2 API Reference9

14.2.1 Requirements on Iterators10

An iterator used with a UPC++ operation in this section must adhere to the following11

requirements:12

• It must satisfy the Iterator and EqualityComparable C++ concepts.13

• Calling std::distance on the iterator must not invalidate it.14

14.2.2 Fragmented Put15

template < typename SrcIter , typename DestIter ,16

typename Completions = decltype (operation_cx :: as_future ())>17

RType rput_fragmented (18

SrcIter src_runs_begin , SrcIter src_runs_end ,19

DestIter dest_runs_begin , DestIter dest_runs_end ,20

Completions cxs= Completions {});21

Preconditions:22

SrcIter and DestIter both satisfy the iterator requirements above.23

std::get<0>(*std::declval<SrcIter>()) has a return type convertible24

to T const*, for some type T.25

std::get<1>(*std::declval<SrcIter>()) has a return type convertible26

to std::size_t.27

std::get<0>(*std::declval<DestIter>()) has the return type global_ptr<T>,28

for the same type T as with SrcIter.29

std::get<1>(*std::declval<DestIter>()) has a return type convert-30

ible to std::size_t.31

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 85

UPC++ Specification v1.0 Draft 5

All destination addresses must be global_ptr<T>’s referencing memory1

with affinity to the same rank.2

The length of the expanded address sequence (the sum over the run3

lengths) must be the same for the source and destination sequences.4

For some type T, takes a sequence of source addresses of T const* and a se-5

quence of destination addresses of global_ptr<T> and does the corresponding6

puts from each source address to the destination address of the same sequence7

position.8

Address sequences are encoded in run-length form as sequences of runs, where9

each run is a pair consisting of a starting address plus the number of consecutive10

elements beginning at that address.11

As an example of valid types for individual runs, SrcIter could be an iterator12

over elements of type std::pair<T const*, std::size_t>, and DestIter an13

iterator over std::pair<global_ptr<T>, std::size_t>. Variations replac-14

ing std::pair with std::tuple or size_t with other primitive integral types15

are also valid.16

The source sequence iterators must remain valid, and the underlying addresses17

and source memory contents must stay constant until source completion is sig-18

naled. Only after source completion is signaled can the source address sequences19

and memory be reclaimed by the application.20

The destination sequence iterators must remain valid until source completion21

is signaled.22

The destination memory regions must be completely disjoint and must not over-23

lap with any source memory regions, otherwise behavior is undefined. Source24

regions are permitted to overlap with each other.25

Completions:26

• Source: Indicates that the source sequence iterators and underlying mem-27

ory, as well as the destination sequence iterators, are no longer in use by28

UPC++ and may be reclaimed by the user.29

• Remote: Indicates completion of the transfer and deserialization of all30

transferred values.31

• Operation: Indicates completion of all aspects of the operation: serializa-32

tion, deserialization, the remote stores, and destruction of any internally33

managed T values are complete.34

86 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 14. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

C++ memory ordering: The reads of the sources will have a happens-before1

relationship with the source-completion notification actions (future readying,2

promise fulfillment, or persona LPC enlistment). The writes to the destinations3

will have a happens-before relationship with the operation-completion notifica-4

tion actions (future readying, promise fulfillment, or persona LPC enlistment)5

and remote-completion actions (RPC enlistment). For LPC and RPC com-6

pletions, all evaluations sequenced-before this call will have a happens-before7

relationship with the execution of the completion function.8

UPC++ progress level: internal9

14.2.3 Fragmented Get10

template < typename SrcIter , typename DestIter ,11

typename Completions = decltype (operation_cx :: as_future ())>12

RType rget_fragmented (13

SrcIter src_runs_begin , SrcIter src_runs_end ,14

DestIter dest_runs_begin , DestIter dest_runs_end ,15

Completions cxs= Completions {});16

Preconditions:17

SrcIter and DestIter both satisfy the iterator requirements above.18

std::get<0>(*std::declval<SrcIter>()) has the type global_ptr<T>19

for some type T.20

std::get<1>(*std::declval<SrcIter>()) has a type convertible to std::size_t.21

std::get<0>(*std::declval<DestIter>()) has the type T*, for some22

type T.23

std::get<1>(*std::declval<DestIter>()) has a type convertible to24

std::size_t.25

All source addresses must be global_ptr<T>’s referencing memory with26

affinity to the same rank.27

The length of the expanded address sequence (the sum over the run28

lengths) must be the same for the source and destination sequences.29

For some type T, takes a sequence of source addresses of global_ptr<T> and a30

sequence of destination addresses of T* and does the corresponding gets from31

each source address to the destination address of the same sequence position.32

Address sequences are encoded in run-length form as sequences of runs, where33

each run is a pair consisting of a starting address plus the number of consecutive34

elements beginning at that address.35

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 87

UPC++ Specification v1.0 Draft 5

As an example of valid types for individual runs, DestIter could be an it-1

erator over elements of type std::pair<T*, std::size_t>, and SrcIter an2

iterator over std::pair<global_ptr<T>, std::size_t>. Variations replac-3

ing std::pair with std::tuple or size_t with other primitive integral types4

are also valid.5

The source sequence iterators must remain valid, and the underlying addresses6

and memory contents must stay constant until operation completion is sig-7

naled. Only after operation completion is signaled can the address sequences8

and source memory be reclaimed by the application.9

The destination sequence iterators must remain valid until operation comple-10

tion is signaled.11

The destination memory regions must be completely disjoint and must not over-12

lap with any source memory regions, otherwise behavior is undefined. Source13

regions are permitted to overlap with each other.14

Completions:15

• Operation: Indicates completion of all aspects of the operation: serial-16

ization, deserialization, the local stores, and destruction of any internally17

managed T values are complete.18

C++ memory ordering: The reads of the sources and writes to the destina-19

tions will have a happens-before relationship with the operation-completion no-20

tification actions (future readying, promise fulfillment, or persona LPC enlist-21

ment). For LPC completions, all evaluations sequenced-before this call will have22

a happens-before relationship with the execution of the completion function.23

UPC++ progress level: internal24

14.2.4 Fragmented Regular Put25

template < typename SrcIter , typename DestIter ,26

typename Completions = decltype (operation_cx :: as_future ())>27

RType rput_fragmented_regular (28

SrcIter src_runs_begin , SrcIter src_runs_end ,29

std :: size_t src_run_length ,30

DestIter dest_runs_begin , DestIter dest_runs_end ,31

std :: size_t dest_run_length ,32

Completions cxs= Completions {});33

Preconditions:34

88 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 14. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

SrcIter and DestIter both satisfy the iterator requirements above.1

std::declval<SrcIter>() has a type convertible to T const, for some2

type T.3

*std::declval<DestIter>()) has the type global_ptr<T>, for the same4

type T as with SrcIter.5

All destination addresses must be global_ptr<T>’s referencing memory6

with affinity to the same rank.7

The length of the two sequences delimited by (src_runs_begin, src_runs_end)8

and (dest_runs_begin, dest_runs_end) multiplied by (src_run_length,9

dest_run_length) respectively must be the same.10

These calls have the same semantics as their rput_fragmented counterparts11

with the difference that, for each sequence, all run lengths are the same and12

are factored out of the sequences into two extra parameters src_run_length13

and dest_run_length. Thus the iterated elements are no longer pairs, but just14

pointers (the first pair component).15

The source sequence iterators must remain valid, and the underlying addresses16

and source memory contents must stay constant until source completion is sig-17

naled. Only after source completion is signaled can the source address sequences18

and memory be reclaimed by the application.19

The destination sequence iterators must remain valid until source completion20

is signaled.21

Completions:22

• Source: Indicates that the source sequence iterators and underlying mem-23

ory, as well as the destination sequence iterators, are no longer in use by24

UPC++ and may be reclaimed by the user.25

• Remote: Indicates completion of the transfer and deserialization of all26

transferred values.27

• Operation: Indicates completion of all aspects of the operation: serializa-28

tion, deserialization, the remote stores, and destruction of any internally29

managed T values are complete.30

C++ memory ordering: The reads of the sources will have a happens-before31

relationship with the source-completion notification actions (future readying,32

promise fulfillment, or persona LPC enlistment). The writes to the destinations33

will have a happens-before relationship with the operation-completion notifica-34

tion actions (future readying, promise fulfillment, or persona LPC enlistment)35

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 89

UPC++ Specification v1.0 Draft 5

and remote-completion actions (RPC enlistment). For LPC and RPC com-1

pletions, all evaluations sequenced-before this call will have a happens-before2

relationship with the execution of the completion function.3

UPC++ progress level: internal4

14.2.5 Fragmented Regular Get5

template < typename SrcIter , typename DestIter ,6

typename Completions = decltype (operation_cx :: as_future ())>7

RType rget_fragmented_regular (8

SrcIter src_runs_begin , SrcIter src_runs_end ,9

std :: size_t src_run_length ,10

DestIter dest_runs_begin , DestIter dest_runs_end ,11

std :: size_t dest_run_length ,12

Completions cxs= Completions {});13

Preconditions:14

SrcIter and DestIter both satisfy the iterator requirements above.15

std::declval<DestIter>() has a type convertible to T, for some type16

T.17

*std::declval<SrcIter>()) has the type global_ptr<T>, for the same18

type T as with DestIter.19

All source addresses must be global_ptr<T>’s referencing memory with20

affinity to the same rank.21

The length of the two sequences delimited by (src_runs_begin, src_runs_end)22

and (dest_runs_begin, dest_runs_end) multiplied by (src_run_length,23

dest_run_length) respectively must be the same.24

These calls have the same semantics as their rget_fragmented counterparts25

with the difference that, for both sequences, all run lengths are the same and26

are factored out of the sequences into two extra parameters src_run_length27

and dest_run_length. Thus the iterated elements are no longer pairs, but just28

pointers (the first component).29

The source sequence iterators must remain valid, and the underlying addresses30

and memory contents must stay constant until operation completion is sig-31

naled. Only after operation completion is signaled can the address sequences32

and source memory be reclaimed by the application.33

The destination sequence iterators must remain valid until operation comple-34

tion is signaled.35

90 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 14. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

Completions:1

• Operation: Indicates completion of all aspects of the operation: serial-2

ization, deserialization, the local stores, and destruction of any internally3

managed T values are complete.4

C++ memory ordering: The reads of the sources and writes to the destina-5

tions will have a happens-before relationship with the operation-completion no-6

tification actions (future readying, promise fulfillment, or persona LPC enlist-7

ment). For LPC completions, all evaluations sequenced-before this call will have8

a happens-before relationship with the execution of the completion function.9

UPC++ progress level: internal10

14.2.6 Strided Put11

template <std :: size_t Dim , typename T,12

typename Completions = decltype (operation_cx :: as_future ())>13

RType rput_strided (14

T const *src_base ,15

std :: ptrdiff_t const * src_strides ,16

global_ptr <T> dest_base ,17

std :: ptrdiff_t const * dest_strides ,18

std :: size_t const *extents ,19

Completions cxs= Completions {});20

21

template <std :: size_t Dim , typename T,22

typename Completions = decltype (operation_cx :: as_future ())>23

RType rput_strided (24

T const *src_base ,25

std :: array <std :: ptrdiff_t ,Dim > const & src_strides ,26

global_ptr <T> dest_base ,27

std :: array <std :: ptrdiff_t ,Dim > const & dest_strides ,28

std :: array <std :: size_t ,Dim > const &extents ,29

Completions cxs= Completions {});30

Precondition: T must be a Serializable type. All source addresses and destina-31

tion global pointers must reference valid objects of type T. Each of src_strides[i],32

dest_strides[i], and extents[i] must be valid objects of their respective33

pointed-to type for all 0 <= i < Dim.34

If Dim == 0, src_strides, dest_strides, and extents are ignored, and the35

data movement performed is equivalent to rput(src_base, dest_base, 1).36

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 91

UPC++ Specification v1.0 Draft 5

Otherwise, performs the semantic equivalent of many put’s of type T. Let the1

index space be the set of integer vectors of dimension Dim in the bounding box2

with the inclusive lower bound at the all-zero origin, and the exclusive upper3

bound equal to extents. For each index vector index in the index space, there4

will be a put with source and destination addresses computed as:5

// "dot" is the vector dot product .6

// Pointer arithmetic is done in bytes , not elements of T.7

// " dest_base " is a global_ptr , following syntax is8

// pseudo -code.9

src_address = src_base + dot(index , src_strides)10

dest_address = dest_base + dot(index , dest_strides)11

The destination memory regions must be completely disjoint and must not over-12

lap with any source memory regions, otherwise behavior is undefined. Source13

regions are permitted to overlap with each other.14

The contents of the source addresses, as well as the stride and extents vectors,15

must remain valid and constant until source completion is signaled.16

Completions:17

• Source: Indicates that the source memory is no longer in use by UPC++18

and may be reclaimed by the user.19

• Remote: Indicates completion of the transfer and deserialization of all20

transferred values.21

• Operation: Indicates completion of all aspects of the operation: serializa-22

tion, deserialization, the remote stores, and destruction of any internally23

managed T values are complete.24

C++ memory ordering: The reads of the sources will have a happens-before25

relationship with the source-completion notification actions (future readying,26

promise fulfillment, or persona LPC enlistment). The writes to the destinations27

will have a happens-before relationship with the operation-completion notifica-28

tion actions (future readying, promise fulfillment, or persona LPC enlistment)29

and remote-completion actions (RPC enlistment). For LPC and RPC com-30

pletions, all evaluations sequenced-before this call will have a happens-before31

relationship with the execution of the completion function.32

UPC++ progress level: internal33

14.2.7 Strided Get34

92 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

CHAPTER 14. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

template <std :: size_t Dim , typename T,1

typename Completions = decltype (operation_cx :: as_future ())>2

RType rget_strided (3

global_ptr <T> src_base ,4

std :: ptrdiff_t const * src_strides ,5

T *dest_base ,6

std :: ptrdiff_t const * dest_strides ,7

std :: size_t const *extents ,8

Completions cxs= Completions {});9

10

template <std :: size_t Dim , typename T,11

typename Completions = decltype (operation_cx :: as_future ())>12

RType rget_strided (13

global_ptr <T> src_base ,14

std :: array <std :: ptrdiff_t ,Dim > const & src_strides ,15

T *dest_base ,16

std :: array <std :: ptrdiff_t ,Dim > const & dest_strides ,17

std :: array <std :: size_t ,Dim > const &extents ,18

Completions cxs= Completions {});19

Precondition: T must be a Serializable type. All source global pointers and des-20

tination addresses must reference valid objects of type T. Each of src_strides[i],21

dest_strides[i], and extents[i] must be valid objects of their respective22

pointed-to type for all 0 <= i < Dim.23

If Dim == 0, src_strides, dest_strides, and extents are ignored, and the24

data movement performed is equivalent to rget(src_base, dest_base, 1).25

Otherwise, performs the reverse direction of rput_strided where now the26

source memory is remote and the destination is local.27

The destination memory regions must be completely disjoint and must not over-28

lap with any source memory regions, otherwise behavior is undefined. Source29

regions are permitted to overlap with each other.30

The contents of the source addresses, as well as the stride and extents vectors,31

must remain valid and constant until operation completion is signaled.32

Completions:33

• Operation: Indicates completion of all aspects of the operation: serial-34

ization, deserialization, the local stores, and destruction of any internally35

managed T values are complete.36

C++ memory ordering: The reads of the sources and writes to the destina-37

tions will have a happens-before relationship with the operation-completion no-38

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 93

UPC++ Specification v1.0 Draft 5

tification actions (future readying, promise fulfillment, or persona LPC enlist-1

ment). For LPC completions, all evaluations sequenced-before this call will have2

a happens-before relationship with the execution of the completion function.3

UPC++ progress level: internal4

94 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Chapter 151

Memory Kinds2

The memory kinds interface enables the programmer to identify regions of memory requir-3

ing different access methods or having different performance properties, and subsequently4

rely on the UPC++ communication services to perform transfers among such regions (both5

local and remote) in a manner transparent to the programmer. With GPU devices, HBM,6

scratch-pad memories, NVRAM and various types of storage-class and fabric-attached7

memory technologies featured in vendors’ public road maps, UPC++ must be prepared to8

deal efficiently with data transfers among all the memory technologies in any given system.9

Since memory kinds will be implemented in Year 2, we defer detailed discussion until10

next year.11

95

Appendix A1

Notes for Implementers2

The following are possible implementations of template metaprogramming utilities for3

UPC++ features.4

A.1 future_element_t and future_element_moved_t5

template <int I, typename T>6

struct future_element ; // undefined7

8

template <int I, typename T, typename ...U>9

struct future_element <I, future <T, U...>> {10

typedef typename future_element <I-1, future <U... > >:: type type;11

typedef typename future_element <I-1, future <U... > >:: moved_type12

moved_type ;13

};14

15

template < typename T, typename ...U>16

struct future_element <0, future <T, U...>> {17

typedef T type;18

typedef T&& moved_type ;19

};20

21

template <int I>22

struct future_element <I, future <>> {23

typedef void type;24

typedef void moved_type ;25

};26

27

96

APPENDIX A. NOTES FOR IMPLEMENTERS

template <int I, typename T>1

using future_element_t = typename future_element <I, T >:: type;2

3

template <int I, typename T>4

using future_element_moved_t =5

typename future_element <I, T >:: moved_type ;6

A.2 future<T...>::when_all7

Utility types:8

template <template < typename ...Us > class T, typename A, typename B>9

struct concat_type ; // undefined10

11

template <template < typename ...Us > class T,12

typename ...As , typename ... Bs >13

struct concat_type <T, T<As...>, T<Bs...> > {14

typedef T<As..., Bs...> type;15

};16

17

template <template < typename ...Us > class T,18

typename A, typename ... Bs >19

struct concat_element_types {20

typedef typename concat_element_types <T, Bs ... >:: type rest;21

typedef typename concat_type <T, A, rest >:: type type;22

};23

24

template <template < typename ...Us > class T, typename A>25

struct concat_element_types <T, A> {26

typedef A type;27

};28

29

template <template < typename ...Us > class T, typename ...U>30

using concat_element_types_t =31

typename concat_element_types <T, U... >:: type;32

Declaration of future<T...>::when_all:33

template < typename ... Futures >34

concat_element_types_t <future , Futures ...> when_all (Futures ... fs);35

Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500. 97

UPC++ Specification v1.0 Draft 5

A.3 to_future1

Utility types:2

template < typename T>3

struct future_type {4

typedef future <T> type;5

};6

7

template < typename ...T>8

struct future_type <future <T...>> {9

typedef future <T...> type;10

};11

12

template <>13

struct future_type <void > {14

typedef future <> type;15

};16

17

template < typename T>18

using future_type_t = typename future_type <T >:: type;19

20

template < typename ...T>21

using future_types_t =22

concat_element_types_t <future , future_type_t <T >... >;23

Declaration of to_future:24

template < typename ...U>25

future_types_t <U...> to_future (U ... futures_or_results);26

A.4 future_invoke_result_t27

C++11-compliant implementation:28

template < typename Func , typename ... ArgTypes >29

using future_invoke_result_t =30

future_type_t < typename std :: result_of <Func(ArgTypes ...) >:: type >;31

C++17-compliant implementation:32

template < typename Func , typename ... ArgTypes >33

using future_invoke_result_t =34

future_type_t <std :: invoke_result_t <Func , ArgTypes ...>>;35

98 Base revision 04da85a, Mon Jan 29 22:47:42 2018 -0500.

Bibliography

[1] ISO. ISO/IEC 14882:2011(E) Information technology - Programming Languages -
C++. Geneva, Switzerland, 2012.

[2] ISO. ISO/IEC 14882:2014(E) Information technology - Programming Languages -
C++, working draft. Geneva, Switzerland, 2014.

[3] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A PGAS ex-
tension for C++. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pages 1105–1114, May 2014.

99

	Contents
	1 Overview and Scope
	1.1 Preliminaries
	1.2 Execution Model
	1.3 Memory Model
	1.4 Organization of this Document
	1.5 Document Conventions
	1.6 Glossary

	2 Init and Finalize
	2.1 Overview
	2.2 Hello World
	2.3 API Reference

	3 Global Pointers
	3.1 Overview
	3.2 API Reference

	4 Storage Management
	4.1 Overview
	4.2 API Reference

	5 Futures and Promises
	5.1 Overview
	5.2 The Basics of Asynchronous Communication
	5.3 Working with Promises
	5.4 Advanced Callbacks
	5.5 Execution Model
	5.6 Anonymous Dependencies
	5.7 Lifetime and Thread Safety
	5.8 API Reference
	5.8.1 future
	5.8.2 promise

	6 Serialization
	6.1 Functions

	7 Completion
	7.1 Overview
	7.2 Completion Objects
	7.2.1 Restrictions
	7.2.2 Completion and Return Types
	7.2.3 Default Completions

	7.3 API Reference

	8 One-Sided Communication
	8.1 Overview
	8.2 API Reference
	8.2.1 Remote Puts
	8.2.2 Remote Gets

	9 Remote Procedure Call
	9.1 Overview
	9.2 Remote Hello World Example
	9.3 API Reference

	10 Progress
	10.1 Overview
	10.2 Restricted Context
	10.3 Attentiveness
	10.4 Thread Personas/Notification Affinity
	10.5 API Reference
	10.5.1 persona
	10.5.2 persona_scope
	10.5.3 Outgoing Progress

	11 Atomics
	11.1 Overview
	11.2 API Reference

	12 Teams
	12.1 Overview
	12.2 Local Teams
	12.3 API Reference
	12.3.1 team
	12.3.2 team_id
	12.3.3 Fundamental Teams
	12.3.4 Collectives

	13 Distributed Objects
	13.1 Overview
	13.2 Building Distributed Objects
	13.3 Ensuring Distributed Existence
	13.4 API Reference

	14 Non-Contiguous One-Sided Communication
	14.1 Overview
	14.2 API Reference
	14.2.1 Requirements on Iterators
	14.2.2 Fragmented Put
	14.2.3 Fragmented Get
	14.2.4 Fragmented Regular Put
	14.2.5 Fragmented Regular Get
	14.2.6 Strided Put
	14.2.7 Strided Get

	15 Memory Kinds
	A Notes for Implementers
	A.1 future_element_t and future_element_moved_t
	A.2 future<T...>::when_all
	A.3 to_future
	A.4 future_invoke_result_t

	Bibliography

