

Guide to use for Developers

Message Module V. 0.05.06

Moisés Alcocer, 2017

https://www.ironwoods.es

Index of contents

 1. Installation

 2. Working

 2.1. Instances the main class (facade)

 2.2. Use the module logic

 2.2.1. Available methods

 2.2.2. Available methods and basic use

 2.2.3. Facade class: basic structure

1. Installation

 For using the module first time you must follow this Step by step

installation

 1) Requires the main class: "messages.class.php", or adds it to your

autoload as: "ironwoods\modules\messages\Messages".

 2) Instances the main class:

 $msgs = new ironwoods\modules\messages\Messages(
 $your_db_connection
);

 3) Creates the settings file and the tables in the Database:

 $arr_with_data = [...]; //see below

 $msgs->install($arr_with_data);

 You need some information about the table referred in your system, for
composing the $arr_with_data. For example, if you have the table "xi_users":
the users are who send messages to each other and "xi_" is the prefix for your
tables.
 $arr_with_data = [
 "table-prefix" => "xi_",
 "table" => "users",

 //Next are from your table ID:

 "id" => "id",
 "id-type" => "int",
 "id-length" => 12,

 "id-unsigned" => TRUE,
];

 Now, you can check if the installation is ok: search for the new table in
the DB: "xi_users" and for the settings file in the module configuration
directory: "message-mod/config/files/ ". If both is OK the installation was
successful!

2. Working

2.1. Instances main class

 For using the module, after the installation, first of all, it is necessary to
instance the main class:

 $msgs = new ironwoods\modules\messages\Messages(
 $your_db_connection
);

2.2. Use the module logical functions

2.2.1. Available methods

 There are several functional methods that you can use. It's necessary to
understand that in the table "messages" messages and drafts are stored together,
the difference between they are that the drafts don't have a receiver ID. From
the logic point of view, or access to a row content, a draft owner is the user that
wrote it (this row doesn't have a receiver ID). For a message the owner is the
user that received it. Sended messages aren't handled in this version.

 Methods to get a number of messages for the user:

 - countMsgs() -> Counts all the received messages
 - countNewMsgs() -> Counts the unread messages

 Other methods to handle messages:

 - deleteOne() -> Deletes a received message

 - getAll() -> Gets all messages of the receiver
 - getOne() -> Gets the message with the identifier
 - getUnread() -> Gets all unread messages of the receiver
 - send() -> Sets receiver ID in a message
 - setRead() -> Sets the received message as read

 Methods to handle drafts:

 - addOneDraft() -> Inserts a new draft in the DB
 - changeDraftContent() -> Updates the content in a draft
 - changeDraftSubject() -> Updates the subject in a draft

 - deleteOneDraft() -> Deletes a draft
 - getAllDrafts() -> Gets all drafts for the author
 - getOneDraft() -> Gets the draft with the identifier

2.2.2. Available methods and basic use

2.2.2.1. Count messages

1. Count the user's messages: received (all) and unread (new)

 countNewMsgs() / countMsgs() need the "referer ID" as argument, f.e.
the "user_id".

 //User with ID: 5

 //Number of received messages
 $n_msgs = $msgs->countMsgs(5);

 //Number of received unread messages
 $n_msgs = $msgs->countNewMsgs(5);

2.2.2.2. Handle messages

1. Deleting messages (by receiver)

 Method deleteOne() is used to delete a message from the DB. It accepts
a "message ID" and "the receiver ID". A boolean result will be returned.

 //Deletes message with ID 5, received by user 3
 $res = $msgs->deleteOne(5, 3);

 //Possible way to handle operation results:
 $err = "Message hasn't been deleting";
 $ok = "Message has been deleting";
 $success = ($res)
 ? ["status" => "ok", "feedback" => $ok]
 : ["status" => "err", "feedback" => $err];

2. Getting the received messages

 Method getAll() is used to get all messages for a user (received) passing

the "user ID" as argument.

 //Gets all the messages for user with ID 25
 $arr_msgs = $msgs->getAll(25);

3. Reading a message

 Method getOne() is used to get a message from the Db, the passing the

"message ID" and the "receiver ID"as argument.

 //Gets the message with ID 1 received by user 2
 $msg = $msgs-> getOne(1, 2);

4. Getting the received unread messages

 Method getUnread() gets all unread messages for a user (received). We

pass the "user ID" as argument.

 //Gets unread messages for user with ID 25
 $arr_unread_msgs = $msgs->getUnread(25);

5. Sending messages

 To send a message from the user with ID: 4 to the user with ID: 5 the

method send() is used. Then are two arguments necessary: the "message (draft)
ID" and the "destinatary ID". Then, there are two possible ways: you have a
draft and send it or you write and send at the same time, ergo, you create a draft
and then send it.

 /* Creates a draft (See forward apdo. 2.2.2.3.
 * Handle drafts / Create news)
 * ...
 **/
 $res_id = $msgs->addOneDraft($msg);
 //or: $res_id = $msgs->createDraft($msg);

 //Sends the message to user with ID: 5
 $res = $msgs->send($res_id, 5);

 //Possible way to handle operation results:
 $err = "Message hasn't been sending";
 $ok = "Message has been sending";
 $success = ($res)
 ? ["status" => "ok", "feedback" => $ok]
 : ["status" => "err", "feedback" => $err];

6. Marking a message as read

 The method setRead() is used to set a message as read passing the

"message ID" in firts place and the "user ID" from receiver as second argument.

 //Sets message ID: 25 read by user with ID: 3
 $res = $msgs-> setRead(25, 3);

2.2.2.3. Handle drafts

1. Creating news

 addOneDraft() needs an instance of Message as argument. A Draft or
not sent message will be created. Alternatively, you can use createDraft() in
the same mode that the first one.

 //Creating a draft for the user with ID: 4

 //Way one (passing the data with chain methods):
 $msg = new Message();
 $msg->setSenderId(4)
 ->setSubject("fake")
 ->setContent("lorem ipsum content");

 //or way two (passing the data in constructor):
 $msg = new Message(
 4,
 "fake",
 "lorem ipsum content"
);

 //Storing the draft into DB
 $res_id = $msgs->addOneDraft($msg);
 //or: $res_id = $msgs->createDraft($msg);

2. Changing the content in a draft

 It's possible to change a draft content. You can be to change the subject
and the content, using the methods: changeDraftContent() and
changeDraftSubject(), that both accept, in this order, a "message (draft) ID",
the "writer ID" and "a string with the new". Both operations return a boolean
result.

 //Changes draft with ID 1 of the user with ID 1

 $res = $msgs->changeDraftSubject(
 1,
 "test-xxx"
);

 //Possible way to handle operation results:
 //...

 //Changes draft with ID 1 of the user with ID 1
 $res = $msgs->changeDraftContent(
 1,
 "test-zzz"
);

 //Possible way to handle operation results:
 //...

3. Deleting a draft (by author)

 deleteOneDraft() is the method used to delete a draft from the DB. It
accept a "message ID" and "the author ID". A boolean result will be returned.

 //Deletes draft with ID 3, wrote by user 12
 $res = $msgs->deleteOneDraft(3, 12);

 //Possible way to handle operation results:
 //...

4. Getting drafts from the user

 Method getAllDrafts() gets the drafts belonging to a user, using the
user's ID as argument.

 //Gets drafts from user with ID 3

 $drafts = $msgs-> getAllDrafts(3);

5. Getting a draft

 getOneDraft() is used to get a draft from the Db, passing the "draft ID"

and the "writer ID" as arguments.

 //Gets the draft with ID 1 of the user with ID 1
 $msg = $msgs->getOneDraft(1, 1);

2.2.3. Facade class: basic structure

 <?php namespace ironwoods\modules\messages;
 /**
 * Class and module descriptions
 *
 */

 //requires

 //Use of classes

 class Messages {

 /**********************************/
 /*** Properties declaration *******/

 private $con = NULL;

 /**********************************/
 /*** Methods declaration **********/

 /**
 * Construct
 * To create an instance must be to inyect
 * a connection with the DB
 *
 * @param Object $db_con
 */
 public function __construct($db_con) {

 $this->con = $db_con;
 }

 /*** Public Methods ***************/

 //
 // Install the module
 //
 // The installation require some parameters about
 // your DB as:
 // - DB tables Prefix (if exist), f.e. "appx_"
 // - Name of reference table (without prefix).
 // This is those with the subjects that message
 // ones to others: "users", "owners",
"clients"...
 // - Ref. Table ID, default "id"
 // - Ref. Table ID type, f.e. "Int"
 // - Ref. Table ID length, f.e. "12"
 //

 /**
 * Install the module in the App
 *
 * In the module installation is required
 * data for the table with entities that
 * send and receive the messages:
 * array [
 * "table-prefix" => "xxx",
 * "table" => "xxx",
 * "id" => "xxx"
 * "id-type" => "xxx",
 * "id-length" => 10,
 *]
 * This data is used to create settings file
 * with an array
 *
 * @param Array $arr_data
 */
 public function install($arr_data) {}

 //
 // Uninstall the module
 //
 // This deletes the table with the messages from
 // This the DB and the settings file from the HD
 //

 /**
 * Unistalls the module from the App
 *
 */
 public function uninstall() {}

 //
 // Methods in class "Count"
 //
 //
 /**
 * Counts all of messages received
 *
 * @param int $receiver_id
 * @return int
 */
 public function countMsgs($receiver_id) {}

 /**
 * Counts unread messages
 *
 * @param int $receiver_id
 * @return int
 */
 public function countNewMsgs($receiver_id)
 {}

 //
 // Methods in class "XDraft"
 //
 //
 /**
 * Inserts a new message (draft) in the DB
 *
 * @param Message $x
 * @return int id
 */
 public function addOneDraft(Message $x) {}

 /*** Alternative method for the same ***/
 public function createDraft(Message $x) {}

 /**
 * Changes the content for a draft
 *
 * @param int $id
 * @param string $str
 * @return boolean
 */
 public function changeDraftContent(
 $id, $str) {}

 /**
 * Changes the subject for a draft
 *
 * @param int $id
 * @param string $str
 * @return boolean
 */
 public function changeDraftSubject(
 $id, $str) {}

 /**
 * Deletes a draft by the author
 *
 * @param int $id
 * @param int $writer_id
 * @return boolean
 */
 public function deleteOneDraft(
 $id, $writer_id) {}

 /**
 * Gets the drafts for the user with the ID
 *
 * @param int $writer_id
 * @return array
 */
 public function getAllDrafts($writer_id)
{}

 /**
 * Gets the draft with the ID of the author
 *
 * @param int $id
 * @param int $writer_id
 * @return array

 */

 public function getOneDraft(
 $id, $writer_id) {}

 //
 // Methods in class "XMessages"
 //
 //
 /**
 * Deletes a message by receiver
 *
 * @param int $id
 * @param int $receiver_id
 * @return boolean
 */
 public function deleteOne(
 $id, $receiver_id) {}

 /**
 * Gets the messages for the user with ID
 *
 * @param int $receiver_id
 * @return array
 */
 public function getAll($receiver_id) {}

 /**
 * Gets the message for the user with ID
 *
 * @param int $id
 * @param int $receiver_id
 * @return object
 */
 public function getOne($id, $receiver_id)
 {}

 /**
 * Gets the unread messages of the receiver
 *
 * @param id $user_id
 * @return array
 */
 public function getUnread($user_id) {}

 /**
 * Sets the message sended (put the ID for
 * the receiver)
 *
 * @param int $id
 * @param int $destinatary_id
 * @return boolean
 */
 public function send($id, $destinatary_id)
 {}

 /**
 * Sets the field read to 1 in the table
 *
 * @param int $id
 * @param int $receiver_id
 * @return boolean
 */
 public function setRead(
 $id, $receiver_id) {}

 /*** Private Methods **************/

 } //class

