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Complexity:

Can certain tasks

be computed

under certain resource constraints?

. ...



Time
Complexity:

Can certain tasks

be computed

by polynomial time algorithms?
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Space
Complexity:

Can certain tasks

be computed

by algorithms using just LOG-space?
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Communication
Complexity:

Can a boolean function f (x,y)

be jointly computed

using very few bits of communication?
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Circuit
Complexity:

Can a boolean function f (x)

be computed

by polynomial sized boolean circuits?
(made of AND, OR and NOT gates)
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Arithmetic Circuit
Complexity:

Can a polynomial f (x)

be computed

by polynomial sized arithmetic circuits?
(made of+ and× gates)
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Arithmetic Circuit
Complexity:

Can a polynomial f (x)

be computed

by polynomial sized arithmetic circuits?
(made of+ and× gates)

Focus of this talk
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.
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xi
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Fact: [Valiant] Detn is complete* for VP.
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Algebraic analogue of NP
.
Definition (Valiant’s NP, or “explicit polynomials”)
..

.

“Anything that can be succinctly described”

Examples:

Permn = perm

 x11 · · · xn1
... . . . ...

xn1 · · · xnn


=
∑
π∈Sn

n∏
i=1

xiπ(i)

. ...
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Definition (Valiant’s NP, or “explicit polynomials”)
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.

“Anything that can be succinctly described”
▶ Given a monomial, the coefficient can be described easily.

Examples:

Permn = perm
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xn1 · · · xnn
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Algebraic analogue of NP
.
Definition (Valiant’s NP, or “explicit polynomials”)
..

.

“Anything that can be succinctly described”
▶ Given a monomial, the coefficient can be described easily.

Examples:

Permn = perm
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∑

y∈{0,1}m
g (x,y)
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Algebraic analogue of NP
.
Definition (Valiant’s NP, or “explicit polynomials”)
..

.

“Anything that can be succinctly described”
▶ Given a monomial, the coefficient can be described easily.
▶ An exponential sum of a VP polynomial g (x,y):

f (x) =
∑

y∈{0,1}m
g (x,y)

Fact: [Valiant] Permn is complete for VNP.

VP vs VNP
∼⇐⇒ Det vs Perm
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Why?
..

Algo Good lower bounds imply good upper
bounds for polynomial identity testing.
Deterministic algorithms for polynomial
identity testing has many applications.

Compl. VP ̸=VNP is easier to prove than
P ̸=NP.

Math. The “Det vs Perm” is a very elegant
mathematical question.

Fame “The determinant of this conjecture would become permanently
famous.” – Neeraj Kayal
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Proof strategies to separate VP and VNP
▶ Polynomial identity testing:

[Heintz-Schnorr, Kabanets-Impagliazzo, Agrawal]: Strong enough
PITs imply lower bounds.

▶ Geometric Complexity Theory:
[Mulmuley-Sohoni]: The “symmetries” of determinant and
permanent are very different. Formalize this via representation
theory.

▶ Real τ-conjecture:
[Shub-Smale]: “Simple” polynomials cannot have too many real
roots. E.g. If f and g are univariates with s monomials, how many
real roots can f g + 1 have?

▶ Direct attacks. (This talk.)
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How does one begin?
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ΣΠΣΠ circuits

▶ Depth-2 circuits:
Sum of few monomials a.k.a. sparse polynomials

▶ Depth-3 circuits:
Sum of products of linear polynomials.

▶ Depth-4 circuits:
Sum of products of sparse polynomials.

How powerful are such shallow circuits?
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Surprising because
▶ such a result not true over small fields [Grigoriev-Karpinski-98],
▶ such a result not true for ΣΠdΣ circuits,
▶ no ΣΠΣ circuit for Detd was known better than size d != d O(d )

over any field.
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Woah... that was a lot of information

▶ Two possible ways to prove VP ̸=VNP:

Prove an nω(
p

d ) lower bound for ΣΠΣ
p

d circuits overQ.
Prove an nω(

p
d ) lower bound for ΣΠ

p
dΣΠ

p
d circuits.

▶ We already have nΩ(
p

d ) lower bounds in both cases, in fact for
slightly more general classes!

▶ It is not abnormal to be super-excited by all this!

Self-plug: For those who want to know more details, here is a continuously
updated survey: http://github.com/dasarpmar/lowerbounds-survey/

. ...
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How are such bounds proved?
Natural proof strategies

Construct a map Γ : F[x1, . . . , xn]→N, that assigns a number to every
polynomial such that:

Typically Γ( f ) is the rank of some associated linear space.

...1 If f is computable by “small” circuits, then Γ( f ) is “small”.

...2 For the desired polynomial f we wish to show a lower bound, then
Γ( f ) is “large”.
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Key observation: There are just 2d linearly independent partial
derivatives of ℓ1 · · ·ℓd .
A generic polynomial is expected to have nΩ(d ) independent partial
derivatives.
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▶ Even a single term (x1+ · · ·+ xn)
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A lower bound
.
Theorem ([Kumar-Saptharishi-15])
..

.

There is a polynomial f ∈ VNP such that, for every finite field Fq , any hom.
ΣΠΣΠΣ circuit computing f over Fq must have size exp(Ωq (

p
d )).

Remarks:

▶ The dual evaluation perspective was also adopted in
[Grigoriev-Karpinski-98] for ΣΠΣ circuits over finite fields.

▶ The proof ought to work for VP also but we don’t have a tight
enough analysis (yet).

▶ Shows why the [Kayal-Limaye-Saha-Srinivasan-14, Kumar-Saraf-14]
technique couldn’t separate depth five from depth four.

▶ Other fields?
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Summary

“I lost you a while back... what do I need to remember?”

▶ Two possible ways to prove VP ̸=VNP:

Prove an nω(
p

d ) lower bound for ΣΠΣ
p

d circuits overQ.
Prove an nω(

p
d ) lower bound for ΣΠ

p
dΣΠ

p
d circuits.

▶ We already have nΩ(
p

d ) lower bounds in both cases, in fact for
slightly more general classes!

▶ Some stuff happened with depth five circuits over small fields.

▶ You should be super-excited by all this!

. ...
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▶ Some stuff happened with depth five circuits over small fields.

▶ You should be super-excited by all this!
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Thank you
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