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Complexity:
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An application

O

Does there exist a perfect matching?

Want efficient parallel algorithms.

O

Question: Can we test non-zeroness

of “efficient polynomials™?

O O
OA’O Firstly, what are efficient polynomials?

Tuttes Theorem

The graph has a perfect matching if and only if
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Algo Good lower bounds imply good upper

bounds for polynomial identity testing. f\\}
Deterministic algorithms for polynomial ‘é"!y

identity testing has many applications.
Compl. VP # VNP is easier to prove than
P #£NP.

Math. The “Det vs Perm” is a very elegant
mathematical question.

Fame “The determinant of this conjecture would become permanently
famous.” - Neeraj Kayal
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How does one begin?

» [Baur-Strassen 83]: An )(nlogd) lower bound for an explicit
polynomial computed by an arithmetic circuit.

> [Kalorkoti 85]: An £2(72?) lower bound for an explicit polynomial
computed by an arithmetic formulas.

“If you can’t solve a problem, there is a simpler problem that you
can't solve. Find it” — George Palya

... lower bounds for small-depth circuits.
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Key observation: Many low-degree combinations of partial
derivatives are zero if all Q;s have low degree.
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» [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]:
hom. XIIXII circuits: terms like Q - -+ Q,, with total degree d.

T(f) = dim(multox=d=*(o(f)))

Dimension of projected shifted partials of a random restriction of f.
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REMARKS:
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» The proof ought to work for VP also but we don't have a tight
enough analysis (yet).

» Shows why the [Kayal-Limaye-Saha-Srinivasan-14, Kumar-Saraf-14]
technique couldn’t separate depth five from depth four.

» Other fields?
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Summary

“Tlost you a while back... what do I need to remember?”

Two possible ways to prove VP # VNP:
Prove an 7V lower bound for SISV circuits over Q.

Prove an n“’(ﬁ) lower bound for ZH‘/EZH‘/E circuits.

We already have nUVd)

slightly more general classes!

lower bounds in both cases, in fact for

Some stuff happened with depth five circuits over small fields.

You should be super-excited by all this!
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