# Lower bounds for shallow arithmetic circuits

## Ramprasad Saptharishi Tel Aviv University

Indian Institute of Technology Bombay, November 2015 Complexity:

Can certain tasks

be computed

under certain resource constraints?

Time Complexity:

Can certain tasks

be computed

by polynomial time algorithms?

Space Complexity:

Can certain tasks

be computed

by algorithms using just LOG-space?

Communication Complexity:

Can a boolean function  $f(\mathbf{x}, \mathbf{y})$ 

be jointly computed

using very few bits of communication?

Circuit Complexity:

Can a boolean function  $f(\mathbf{x})$ 

be computed

by polynomial sized boolean circuits? (made of AND, OR and NOT gates) Arithmetic Circuit Complexity:

Can a polynomial  $f(\mathbf{x})$ 

be computed

by polynomial sized arithmetic circuits? (made of + and × gates) Arithmetic Circuit Complexity:

Can a polynomial  $f(\mathbf{x})$ 

be computed

by polynomial sized arithmetic circuits? (made of + and × gates)

## Focus of this talk



Does there exist a perfect matching?





Does there exist a perfect matching? Want *efficient parallel* algorithms.



Does there exist a perfect matching? Want *efficient parallel* algorithms.

Tutte's Theorem

The graph has a perfect matching *if and only if* 

as a formal polynomial.



Does there exist a perfect matching? Want *efficient parallel* algorithms.

**Question:** Can we test non-zeroness of "efficient polynomials"?

Tutte's Theorem

The graph has a perfect matching *if and only if* 

as a formal polynomial.



Does there exist a perfect matching? Want *efficient parallel* algorithms.

**Question:** Can we test non-zeroness of "efficient polynomials"?

Firstly, what are efficient polynomials?

Tutte's Theorem

The graph has a perfect matching if and only if

as a formal polynomial.





















#### *Definition (Valiant's P, or efficient computation)*

Polynomials  $f(x_1, ..., x_n)$  that can be computed by poly(n)-sized arithmetic circuits?

*Definition (Valiant's P, or efficient computation)* 

Polynomials  $f(x_1, ..., x_n)$ , of degree d = poly(n), that can be computed by poly(n)-sized arithmetic circuits.

#### *Definition (Valiant's P, or efficient computation)*

Polynomials  $f(x_1, ..., x_n)$ , of degree d = poly(n), that can be computed by poly(n)-sized arithmetic circuits.

$$[\text{Ben-Or}] \quad \text{ESym}_d(x_1, \cdots, x_n) = \sum_{\substack{S \subseteq [n], |S| = d}} \prod_{i \in S} x_i$$
$$[\text{Berkowitz, Mahajan-Vinay}] \quad \text{Det}_n = \begin{vmatrix} x_{11} & \cdots & x_{n1} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix}$$

#### *Definition (Valiant's P, or efficient computation)*

Polynomials  $f(x_1, ..., x_n)$ , of degree d = poly(n), that can be computed by poly(n)-sized arithmetic circuits.

#### Examples:

[Ben-Or] 
$$\operatorname{ESym}_d(x_1, \dots, x_n) = \sum_{S \subseteq [n], |S| = d} \prod_{i \in S} x_i$$
  
[Berkowitz, Mahajan-Vinay]  $\operatorname{Det}_n = \begin{vmatrix} x_{11} & \cdots & x_{n1} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix}$ 

**Fact:** [Valiant]  $Det_n$  is complete\* for VP.

Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

$$\operatorname{Perm}_{n} = \operatorname{perm} \begin{bmatrix} x_{11} \cdots x_{n1} \\ \vdots & \ddots & \vdots \\ x_{n1} \cdots & x_{nn} \end{bmatrix}$$
$$= \sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i\pi(i)}$$

#### Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

• Given a monomial, the coefficient can be described easily.

$$\operatorname{Perm}_{n} = \operatorname{perm} \left[ \begin{array}{ccc} x_{11} & \cdots & x_{n1} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array} \right]$$

#### Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

• Given a monomial, the coefficient can be described easily.

$$\operatorname{Perm}_{n} = \operatorname{perm} \left[ \begin{array}{ccc} \ell_{11} & \cdots & \ell_{n1} \\ \vdots & \ddots & \vdots \\ \ell_{n1} & \cdots & \ell_{nn} \end{array} \right]$$

#### Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

- Given a monomial, the coefficient can be described easily.
- An exponential sum of a VP polynomial  $g(\mathbf{x}, \mathbf{y})$ :

$$f(\mathbf{x}) = \sum_{\mathbf{y} \in \{0,1\}^m} g(\mathbf{x}, \mathbf{y})$$

Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

- Given a monomial, the coefficient can be described easily.
- An exponential sum of a VP polynomial  $g(\mathbf{x}, \mathbf{y})$ :

$$f(\mathbf{x}) = \sum_{\mathbf{y} \in \{0,1\}^m} g(\mathbf{x}, \mathbf{y})$$

**Fact:** [Valiant]  $Perm_n$  is complete for VNP.

Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

- Given a monomial, the coefficient can be described easily.
- An exponential sum of a VP polynomial  $g(\mathbf{x}, \mathbf{y})$ :

$$f(\mathbf{x}) = \sum_{\mathbf{y} \in \{0,1\}^m} g(\mathbf{x}, \mathbf{y})$$

**Fact:** [Valiant]  $Perm_n$  is complete for VNP.

Definition (Valiant's NP, or "explicit polynomials")

"Anything that can be succinctly described"

- Given a monomial, the coefficient can be described easily.
- An exponential sum of a VP polynomial  $g(\mathbf{x}, \mathbf{y})$ :

$$f(\mathbf{x}) = \sum_{\mathbf{y} \in \{0,1\}^m} g(\mathbf{x}, \mathbf{y})$$

**Fact:** [Valiant]  $Perm_n$  is complete for VNP.

$$VP$$
 vs  $VNP$   $\stackrel{\sim}{\Longleftrightarrow}$  Det vs Perm

## Why?



Why?


Algo Good lower bounds imply good upper bounds for polynomial identity testing. Deterministic algorithms for polynomial identity testing has many applications.



- Algo Good lower bounds imply good upper bounds for polynomial identity testing. Deterministic algorithms for polynomial identity testing has many applications.
- Compl.  $VP \neq VNP$  is easier to prove than  $P \neq NP$ .



- Algo Good lower bounds imply good upper bounds for polynomial identity testing. Deterministic algorithms for polynomial identity testing has many applications.
- Compl.  $VP \neq VNP$  is easier to prove than  $P \neq NP$ .
  - *Math.* The "Det vs Perm" is a very elegant mathematical question.



- Algo Good lower bounds imply good upper bounds for polynomial identity testing. Deterministic algorithms for polynomial identity testing has many applications.
- Compl.  $VP \neq VNP$  is easier to prove than  $P \neq NP$ .
- *Math.* The "Det vs Perm" is a very elegant mathematical question.



Fame

"The determinant of this conjecture would become permanently famous." – Neeraj Kayal













 POLYNOMIAL IDENTITY TESTING: [Heintz-Schnorr, Kabanets-Impagliazzo, Agrawal]: Strong enough PITs imply lower bounds.

- POLYNOMIAL IDENTITY TESTING: [Heintz-Schnorr, Kabanets-Impagliazzo, Agrawal]: Strong enough PITs imply lower bounds.
- GEOMETRIC COMPLEXITY THEORY:

[Mulmuley-Sohoni]: The "symmetries" of determinant and permanent are very different. Formalize this via representation theory.

- POLYNOMIAL IDENTITY TESTING: [Heintz-Schnorr, Kabanets-Impagliazzo, Agrawal]: Strong enough PITs imply lower bounds.
- GEOMETRIC COMPLEXITY THEORY:

[Mulmuley-Sohoni]: The "symmetries" of determinant and permanent are very different. Formalize this via representation theory.

► REAL  $\tau$ -CONJECTURE: [Shub-Smale]: "Simple" polynomials cannot have too many real roots. E.g. If f and g are univariates with s monomials, how many real roots can f g + 1 have?

- POLYNOMIAL IDENTITY TESTING: [Heintz-Schnorr, Kabanets-Impagliazzo, Agrawal]: Strong enough PITs imply lower bounds.
- GEOMETRIC COMPLEXITY THEORY:

[Mulmuley-Sohoni]: The "symmetries" of determinant and permanent are very different. Formalize this via representation theory.

- ► REAL  $\tau$ -CONJECTURE: [Shub-Smale]: "Simple" polynomials cannot have too many real roots. E.g. If f and g are univariates with s monomials, how many real roots can f g + 1 have?
- DIRECT ATTACKS.

- POLYNOMIAL IDENTITY TESTING: [Heintz-Schnorr, Kabanets-Impagliazzo, Agrawal]: Strong enough PITs imply lower bounds.
- GEOMETRIC COMPLEXITY THEORY:

[Mulmuley-Sohoni]: The "symmetries" of determinant and permanent are very different. Formalize this via representation theory.

- ► REAL  $\tau$ -CONJECTURE: [Shub-Smale]: "Simple" polynomials cannot have too many real roots. E.g. If f and g are univariates with s monomials, how many real roots can f g + 1 have?
- DIRECT ATTACKS. (This talk.)

- ► [Baur-Strassen 83]: An  $\Omega(n \log d)$  lower bound for an explicit polynomial computed by an arithmetic circuit.
- [Kalorkoti 85]: An  $\Omega(n^2)$  lower bound for an explicit polynomial computed by an arithmetic formulas.

- ► [Baur-Strassen 83]: An  $\Omega(n \log d)$  lower bound for an explicit polynomial computed by an arithmetic circuit.
- [Kalorkoti 85]: An  $\Omega(n^2)$  lower bound for an explicit polynomial computed by an arithmetic formulas.

"If you can't solve a problem, there is a simpler problem that you can't solve. Find it" – George Pólya

- ► [Baur-Strassen 83]: An  $\Omega(n \log d)$  lower bound for an explicit polynomial computed by an arithmetic circuit.
- [Kalorkoti 85]: An  $\Omega(n^2)$  lower bound for an explicit polynomial computed by an arithmetic formulas.

"If you can't solve a problem, there is a simpler problem that you can't solve. Find it" – George Pólya

- ► [Baur-Strassen 83]: An  $\Omega(n \log d)$  lower bound for an explicit polynomial computed by an arithmetic circuit.
- [Kalorkoti 85]: An  $\Omega(n^2)$  lower bound for an explicit polynomial computed by an arithmetic formulas.

"If you can't solve a problem, there is a simpler problem that you can't solve. Find it" – George Pólya

... lower bounds for small-depth circuits.

 $\Sigma\Pi$  circuits

 $\Sigma\Pi$  circuits

 DEPTH-2 CIRCUITS: Sum of few monomials

 $\Sigma\Pi$  circuits

 DEPTH-2 CIRCUITS: Sum of few monomials a.k.a. sparse polynomials

#### $\Sigma\Pi\Sigma$ circuits

 DEPTH-2 CIRCUITS: Sum of few monomials a.k.a. sparse polynomials

► DEPTH-3 CIRCUITS:

#### $\Sigma\Pi\Sigma$ circuits

 DEPTH-2 CIRCUITS: Sum of few monomials a.k.a. sparse polynomials

 DEPTH-3 CIRCUITS: Sum of products of linear polynomials.

#### $\Sigma\Pi\Sigma\Pi$ circuits

- DEPTH-2 CIRCUITS: Sum of few monomials a.k.a. sparse polynomials
- DEPTH-3 CIRCUITS: Sum of products of linear polynomials.
- DEPTH-4 CIRCUITS:

#### $\Sigma\Pi\Sigma\Pi$ circuits

 DEPTH-2 CIRCUITS: Sum of few monomials a.k.a. sparse polynomials

 DEPTH-3 CIRCUITS: Sum of products of linear polynomials.

 DEPTH-4 CIRCUITS: Sum of products of sparse polynomials.

#### $\Sigma\Pi\Sigma\Pi$ circuits

 DEPTH-2 CIRCUITS: Sum of few monomials a.k.a. sparse polynomials

 DEPTH-3 CIRCUITS: Sum of products of linear polynomials.

 DEPTH-4 CIRCUITS: Sum of products of sparse polynomials.

How powerful are such shallow circuits?

## Depth reduction

#### Generic depth reduction



## Depth reduction

*Theorem* ([Valiant-Skyum-Berkowitz-Rackoff-83])

Can be computed by

Can be computed by

arithmetic circuits

of poly(n, d) size

log-depth circuits

of poly(n, d) size

*Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Can be computed by

Can be computed by

arithmetic circuits

depth-4 circuits

of "small" size

of "not-too-large" size

*Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Can be computed by

Can be computed by

arithmetic circuits

depth-4 circuits

of poly(n, d) size

of  $n^{O(\sqrt{d})}$  size

*Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Can be computed by

Can be computed by

arithmetic circuits

depth-4 circuits\*

of  $\operatorname{poly}(n,d)$  size

of  $n^{O(\sqrt{d})}$  size

*Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Can be computed by

Can be computed by

arithmetic circuits

depth-4 circuits\*

of poly(n, d) size

of  $n^{O(\sqrt{d})}$  size

Depth-4 circuits\* :  $\sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}}$  circuits

*Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Can be computed byCan be computed byarithmetic circuits $\sum \prod \sqrt{d} \sum \prod \sqrt{d}$  circuitsof poly(n,d) sizeof  $n^{O(\sqrt{d})}$  size

#### *Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

| Can be computed by                 | Can be computed by                                                             |
|------------------------------------|--------------------------------------------------------------------------------|
| arithmetic circuits                | $\longrightarrow \Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}} \text{ circuits}$ |
| of $\operatorname{poly}(n,d)$ size | of $n^{O(\sqrt{d})}$ size                                                      |
|                                    | (Or)                                                                           |
| Cannot be computed by              | Cannot be computed by                                                          |
| arithmetic circuits 🛛 🔶 🛁          | $\Sigma \Pi \sqrt{d} \Sigma \Pi \sqrt{d}$ circuits                             |
| of $poly(n, d)$ size               | of $n^{O(\sqrt{d})}$ size                                                      |
# Chasm at depth-4

#### *Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

| Can be computed by                 |      | Can be computed by                                     |
|------------------------------------|------|--------------------------------------------------------|
| arithmetic circuits                |      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits |
| of $\operatorname{poly}(n,d)$ size |      | of $n^{\mathrm{O}(\sqrt{d})}$ size                     |
|                                    | (Or) |                                                        |
| Cannot be computed by              |      | Cannot be computed by                                  |
| arithmetic circuits                | ←    | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits |
| of $poly(n,d)$ size                |      | of $n^{\mathrm{O}(\sqrt{d})}$ size                     |

# Chasm at depth-4

#### *Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])



# Goal: Prove a good enough lower bound for $\sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}}$

Goal: Prove a good enough lower bound for  $\sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}}$ 

*Theorem* ([Nisan-Wigderson-95]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^d \Sigma \Pi^1$  circuits.

**Goal**: Prove a good enough lower bound for  $\sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}}$ 

Theorem ([Nisan-Wigderson-95]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^d \Sigma \Pi^1$  circuits.

Theorem ([Kayal-12]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^{d/2} \Sigma \Pi^2$  circuits.

Goal: Prove a good enough lower bound for  $\sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}}$ 

Theorem ([Nisan-Wigderson-95]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^d \Sigma \Pi^1$  circuits.

Theorem ([Kayal-12]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^{d/2} \Sigma \Pi^2$  circuits.

*Theorem* ([Gupta-Kamath-Kayal-Saptharishi-12]) An  $2^{\Omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits.

**Goal:** Prove  $n^{\omega(\sqrt{d})}$  lower bound for  $\sum \prod_{i=1}^{\sqrt{d}} \sum \prod_{i=1}^{\sqrt{d}}$ 

Theorem ([Nisan-Wigderson-95]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^d \Sigma \Pi^1$  circuits.

Theorem ([Kayal-12]) An  $2^{\Omega(d)}$  lower bound for  $\Sigma \Pi^{d/2} \Sigma \Pi^2$  circuits.

*Theorem* ([Gupta-Kamath-Kayal-Saptharishi-12]) An  $2^{\Omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits.

|                                       |                        | and the deluge that followed                  |            |
|---------------------------------------|------------------------|-----------------------------------------------|------------|
|                                       | Lower bound            | Circuit class                                 | Polynomial |
| [GKK <sub>1</sub> S <sub>0</sub> -12] | $2^{\Omega(\sqrt{d})}$ | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP         |

<mark>G - Ankit Gupta</mark> S<sub>1</sub> - Chandan Saha S<sub>2</sub> - Srikanth Srinivasan K - Pritish Kamath F - Hervé Fournier K<sub>2</sub> - Mrinal Kumar K<sub>1</sub> - Neeraj Kayal L - Nutan Limaye S<sub>z</sub> - Shubhangi Saraf S<sub>0</sub> - Ramprasad Saptharishi M - Guillaume Malod

|                                                    | and the deluge that follow |                                               | ıge that followed |
|----------------------------------------------------|----------------------------|-----------------------------------------------|-------------------|
|                                                    | Lower bound                | Circuit class                                 | Polynomial        |
| [GKK <sub>1</sub> S <sub>0</sub> -12]              | $2^{\Omega(\sqrt{d})}$     | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP                |
| [K <sub>1</sub> S <sub>1</sub> S <sub>0</sub> -13] | $n^{\Omega(\sqrt{d})}$     | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VNP               |

Kamath <mark>K<sub>1</sub> - Neeraj Kayal</mark> Fournier L - Nutan Limaye I Kumar S<sub>3</sub> - Shubhangi Saraf S<sub>0</sub> - Ramprasad Saptharishi M - Guillaume Malod

|                                                    |                        | and the deluge that followed                  |            |
|----------------------------------------------------|------------------------|-----------------------------------------------|------------|
|                                                    | Lower bound            | Circuit class                                 | Polynomial |
| [GKK <sub>1</sub> S <sub>0</sub> -12]              | $2^{\Omega(\sqrt{d})}$ | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP         |
| [K <sub>1</sub> S <sub>1</sub> S <sub>0</sub> -13] | $n^{\Omega(\sqrt{d})}$ | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VNP        |
| [FLMS <sub>2</sub> -13]                            | $n^{\Omega(\sqrt{d})}$ | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP         |

G - Ankit Gupta K - Pritish Kamath K<sub>1</sub> - Neeraj Kayal S<sub>0</sub> - F S<sub>1</sub> - Chandan Saha F - Hervé Fournier L - Nutan Limaye M - G S<sub>2</sub> - Srikanth Srinivasan K<sub>2</sub> - Mrinal Kumar S<sub>3</sub> - Shubhangi Saraf

S<sub>0</sub> - Ramprasad Saptharishi M - Guillaume Malod

|                                                    | and the deluge that followe |                                               |                           |
|----------------------------------------------------|-----------------------------|-----------------------------------------------|---------------------------|
|                                                    | Lower bound                 | Circuit class                                 | Polynomial                |
| [GKK <sub>1</sub> S <sub>0</sub> -12]              | $2^{\Omega(\sqrt{d})}$      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP                        |
| [K <sub>1</sub> S <sub>1</sub> S <sub>0</sub> -13] | $n^{\Omega(\sqrt{d})}$      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VNP                       |
| [FLMS <sub>2</sub> -13]                            | $n^{\Omega(\sqrt{d})}$      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP                        |
| [K <sub>2</sub> S <sub>3</sub> -13]                | $n^{\Omega(\sqrt{d})}$      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | hom. $\Sigma\Pi\Sigma\Pi$ |

G - Ankit Gupta K - Pritish Kamath K<sub>1</sub> - Neeraj Kayal S<sub>0</sub> - Ramprasad Saptharishi S<sub>1</sub> - Chandan Saha F - Hervé Fournier L - Nutan Limaye M - Guillaume Malod S<sub>2</sub> - Srikanth Srinivasan K<sub>2</sub> - Mrinal Kumar S<sub>3</sub> - Shubhangi Saraf

|                                                     |                                             | and the delu                                  | ige that followed |
|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------|
|                                                     | Lower bound                                 | Circuit class                                 | Polynomial        |
| [GKK <sub>1</sub> S <sub>0</sub> -12]               | $2^{\Omega(\sqrt{d})}$                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP                |
| [K <sub>1</sub> S <sub>1</sub> S <sub>0</sub> -13]  | $n^{\Omega(\sqrt{d})}$                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VNP               |
| [FLMS <sub>2</sub> -13]                             | $n^{\Omega(\sqrt{d})}$                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | VP                |
| [K <sub>2</sub> S <sub>3</sub> -13]                 | $n^{\Omega(\sqrt{d})}$                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ | hom. ΣΠΣΠ         |
| [K <sub>1</sub> LS <sub>1</sub> S <sub>2</sub> -14] | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$ | hom. $\Sigma\Pi\Sigma\Pi$                     | VNP               |

G - Ankit Gupta K - Pritish Kamath K - Neraj Kayal S - Ramprasad Saptharishi S - Chandan Saha F - Hervé Fournier L - Nutan Limaye S - Shubhangi Saraf S - Shubhangi Saraf

|                                                                                          |                                                                                                                         | and the delu                                                                 | ige that followed               |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|
|                                                                                          | Lower bound                                                                                                             | Circuit class                                                                | Polynomial                      |
| [GKK <sub>1</sub> S <sub>0</sub> -12]                                                    | $2^{\Omega(\sqrt{d})}$                                                                                                  | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | VP                              |
| [K <sub>1</sub> S <sub>1</sub> S <sub>0</sub> -13]                                       | $n^{\Omega(\sqrt{d})}$                                                                                                  | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | VNP                             |
| [FLMS <sub>2</sub> -13]                                                                  | $n^{\Omega(\sqrt{d})}$                                                                                                  | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | VP                              |
| [K <sub>2</sub> S <sub>3</sub> -13]                                                      | $n^{\Omega(\sqrt{d})}$                                                                                                  | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | hom. ΣΠΣΠ                       |
| [K <sub>1</sub> LS <sub>1</sub> S <sub>2</sub> -14]                                      | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$                                                                             | hom. $\Sigma\Pi\Sigma\Pi$                                                    | VNP                             |
| [K <sub>2</sub> S <sub>3</sub> -14]                                                      | $n^{\Omega(\sqrt{d})}$                                                                                                  | hom. $\Sigma\Pi\Sigma\Pi$                                                    | VP                              |
| G - Ankit Gupta<br>S <sub>1</sub> - Chandan Saha<br>S <sub>2</sub> - Srikanth Srinivasan | K - Pritish Kamath K <sub>1</sub> - N<br>F - Hervé Fournier L - Nu<br>K <sub>2</sub> - Mrinal Kumar S <sub>2</sub> - Sh | eeraj Kayal S <sub>0</sub> - Ramp<br>tan Limaye M - Guilla<br>pubhangi Saraf | orasad Saptharishi<br>ume Malod |

|                                                                           | and the deluge that follow                                                                  |                                                                              |                                 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|
|                                                                           | Lower bound                                                                                 | Circuit class                                                                | Polynomial                      |
| [GKK <sub>1</sub> S <sub>0</sub> -12]                                     | $2^{\Omega(\sqrt{d})}$                                                                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | VP                              |
| [K <sub>1</sub> S <sub>1</sub> S <sub>0</sub> -13]                        | $n^{\Omega(\sqrt{d})}$                                                                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | VNP                             |
| [FLMS <sub>2</sub> -13]                                                   | $n^{\Omega(\sqrt{d})}$                                                                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | VP                              |
| [K <sub>2</sub> S <sub>3</sub> -13]                                       | $n^{\Omega(\sqrt{d})}$                                                                      | $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$                                | hom. $\Sigma\Pi\Sigma\Pi$       |
| [K <sub>1</sub> LS <sub>1</sub> S <sub>2</sub> -14]                       | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$                                                 | hom. $\Sigma\Pi\Sigma\Pi$                                                    | VNP                             |
| [K <sub>2</sub> S <sub>3</sub> -14]                                       | $n^{\Omega(\sqrt{d})}$                                                                      | hom. $\Sigma\Pi\Sigma\Pi$                                                    | VP                              |
| G - Ankit Gupta<br>S <sub>1</sub> - Chandan Saha<br>S Srikanth Sriniyasan | K - Pritish Kamath K <sub>1</sub> - N<br>F - Hervé Fournier L - Nu<br>K Mrinal Kumar S - Sh | eeraj Kayal S <sub>0</sub> - Ramp<br>tan Limaye M - Guilla<br>pubbangi Saraf | orasad Saptharishi<br>ume Malod |

*Theorem* ([Agrawal-Vinay-08, Koiran-12, Tavenas-13])

Can be computed by

Can be computed by

arithmetic circuits

depth-4 circuits\*

of poly(n,d) size

of  $n^{O(\sqrt{d})}$  size

Theorem ([Gupta-Kamath-Kayal-Saptharishi-13])

Can be computed by Can be computed by Over  $\mathbb{Q}$ arithmetic circuits  $\longrightarrow$  depth-3 circuits\* of poly(n,d) size of  $n^{O(\sqrt{d})}$  size

Theorem ([Gupta-Kamath-Kayal-Saptharishi-13])



Theorem ([Gupta-Kamath-Kayal-Saptharishi-13])



Surprising because

- such a result not true over small fields [Grigoriev-Karpinski-98],
- such a result not true for  $\Sigma \Pi^d \Sigma$  circuits,
- ► no ∑∏∑ circuit for Det<sub>d</sub> was known better than size d! = d<sup>O(d)</sup> over any field.

Theorem ([Gupta-Kamath-Kayal-Saptharishi-13])



*Theorem* ([Gupta-Kamath-Kayal-Saptharishi-13])



Another Goal: Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi \Sigma^{\sqrt{d}}$  circuits.

# Another Goal: Prove an $n^{\omega(\sqrt{d})}$ lower bound for $\Sigma \Pi \Sigma^{\sqrt{d}}$ circuits.

Another Goal: Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi \Sigma^{\sqrt{d}}$  circuits.

|                                     | Lower bound                                 | Circuit class                                                              | Polynomial |
|-------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|------------|
| [K <sub>1</sub> S <sub>1</sub> -15] | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$ | $ \sum \prod \sum \sqrt{d}, \\ \sum \prod \sum \prod \sum n^{1-\epsilon} $ | VNP        |

K<sub>1</sub> - Neeraj Kayal K<sub>2</sub> - Mrinal Kumar S<sub>1</sub> - Chandan Saha S<sub>3</sub> - Shubhangi Saraf B - Suman Bera

C - Amit Chakrabarti

Another Goal: Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi \Sigma^{\sqrt{d}}$  circuits.

|                                     | Lower bound                               | Circuit class                                                                   | Polynomial |
|-------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|------------|
| [K <sub>1</sub> S <sub>1</sub> -15] | $n^{\Omega(\sqrt{d})}$ , over $\mathbb Q$ | $\Sigma \Pi \Sigma^{\sqrt{d}},$ $\Sigma \Pi \Sigma \Pi \Sigma^{n^{1-\epsilon}}$ | VNP        |
| [BC-15]                             | $n^{\Omega(\sqrt{d})}$                    | $\Sigma \Pi \Sigma \Pi \Sigma^{n^{0.5-\epsilon}}$                               | VP         |

K<sub>1</sub> - Neeraj Kayal S<sub>1</sub> - Chandan Saha <mark>B - Suman Bera C - Amit Chakrabarti</mark> K<sub>2</sub> - Mrinal Kumar S<sub>3</sub> - Shubhangi Saraf

-

Another Goal: Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi \Sigma^{\sqrt{d}}$  circuits.

|                                     | Lower bound                                 | Circuit class                                                                   | Polynomial |
|-------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|------------|
| [K <sub>1</sub> S <sub>1</sub> -15] | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$ | $\Sigma \Pi \Sigma^{\sqrt{d}},$ $\Sigma \Pi \Sigma \Pi \Sigma^{n^{1-\epsilon}}$ | VNP        |
| [BC-15]                             | $n^{\Omega(\sqrt{d})}$                      | $\Sigma \Pi \Sigma \Pi \Sigma^{n^{0.5-\epsilon}}$                               | VP         |
| [K <sub>2</sub> S <sub>3</sub> -15] | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$ | $\Sigma \Pi \circledast^{n^{1-\epsilon}}$                                       | VNP        |
|                                     |                                             |                                                                                 |            |

K<sub>1</sub> - Neeraj Kayal S<sub>1</sub> - Chandan Saha B - Suman Bera C - Amit Chakrabarti K<sub>2</sub> - Mrinal Kumar S<sub>3</sub> - Shubhangi Saraf

-

Another Goal: Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma \Pi \Sigma^{\sqrt{d}}$  circuits.

|                                                                 | Lower bound                                                                         | Circuit class                                                                   | Polynomial |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|
| [K <sub>1</sub> S <sub>1</sub> -15]                             | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$                                         | $\Sigma \Pi \Sigma^{\sqrt{d}},$ $\Sigma \Pi \Sigma \Pi \Sigma^{n^{1-\epsilon}}$ | VNP        |
| [BC-15]                                                         | $n^{\Omega(\sqrt{d})}$                                                              | $\Sigma \Pi \Sigma \Pi \Sigma^{n^{0.5-\epsilon}}$                               | VP         |
| [K <sub>2</sub> S <sub>3</sub> -15]                             | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$                                         | $\Sigma \Pi \circledast^{n^{1-\epsilon}}$                                       | VNP        |
| [K <sub>1</sub> S <sub>1</sub> -15]                             | $n^{\Omega(\sqrt{d})}$ , over ${\mathbb Q}$                                         | $\Sigma \Pi \otimes^{n^{1-\epsilon}}$                                           | VP         |
| K <sub>1</sub> - <mark>Neeraj Kayal</mark><br>K2 - Mrinal Kumar | <mark>S<sub>1</sub> - Chandan Saha</mark> B - S<br>S <sub>7</sub> - Shubhangi Saraf | Suman Bera C - Amit Chak                                                        | rabarti    |

• Two possible ways to prove  $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

• Two possible ways to prove  $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

• We already have  $n^{\Omega(\sqrt{d})}$  lower bounds in both cases, in fact for slightly more general classes!

#### • Two possible ways to prove $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

- We already have  $n^{\Omega(\sqrt{d})}$  lower bounds in both cases, in fact for slightly more general classes!
- It is not abnormal to be super-excited by all this!

#### • Two possible ways to prove $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

- We already have  $n^{\Omega(\sqrt{d})}$  lower bounds in both cases, in fact for slightly more general classes!
- It is not abnormal to be super-excited by all this!

Self-plug: For those who want to know more details, here is a continuously updated survey: http://github.com/dasarpmar/lowerbounds-survey/

### Outline



#### Outline



## How are such bounds proved?

#### Natural proof strategies

Construct a map  $\Gamma : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{N}$ , that assigns a number to every polynomial such that:

 $\textbf{0} \quad \text{If } f \text{ is computable by "small" circuits, then } \Gamma(f) \text{ is "small".}$ 

# How are such bounds proved?

#### Natural proof strategies

Construct a map  $\Gamma : \mathbb{F}[x_1, \dots, x_n] \to \mathbb{N}$ , that assigns a number to every polynomial such that: Typically  $\Gamma(f)$  is the rank of some associated linear space.

• If f is computable by "small" circuits, then  $\Gamma(f)$  is "small".

# Examples

► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ .

# Examples

► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are just  $2^d$  linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .
► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are just  $2^d$  linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .

$$\partial_{x}(\ell_{1}\cdots\ell_{d}) = \partial_{x}(\ell_{1})\cdot\ell_{2}\cdots\ell_{d} + \cdots + \ell_{1}\cdots\ell_{d-1}\cdot\partial_{x}(\ell_{d})$$
  
$$\in \operatorname{span}\left\{\prod_{i\in S}\ell_{i}:S\subset[d],|S|=d-1\right\}$$

# [Nisan-Wigderson-95]: ΣΠ<sup>d</sup>Σ circuits, sum of terms of the form ℓ<sub>1</sub>···ℓ<sub>d</sub>. Key observation: There are just 2<sup>d</sup> linearly independent partial derivatives of ℓ<sub>1</sub>···ℓ<sub>d</sub>. A generic polynomial is expected to have n<sup>Ω(d)</sup> independent partial derivatives.

► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .

► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation:** There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .



- ► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .
- ► [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ .

- ► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .
- ► [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ .

$$\partial_{x}(Q_{1}\cdots Q_{r}) = \partial_{x}(Q_{1}) \cdot Q_{2}\cdots Q_{r} + \dots + Q_{1}\cdots Q_{r-1} \cdot \partial_{x}(Q_{r})$$
  

$$\in \operatorname{span}\left\{\mathbf{x}^{=\sqrt{d}} \cdot \prod_{i \in S} Q_{i} : S \subset [r], |S| = r-1\right\}$$

- ► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .
- ► [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ .

$$\partial_{x}(Q_{1}\cdots Q_{r}) = \partial_{x}(Q_{1}) \cdot Q_{2}\cdots Q_{r} + \dots + Q_{1}\cdots Q_{r-1} \cdot \partial_{x}(Q_{r})$$
  
$$\in \operatorname{span}\left\{\mathbf{x}^{=\sqrt{d}} \cdot \prod_{i \in S} Q_{i} : S \subset [r], |S| = r-1\right\}$$

Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.

- ► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .
- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . **Key observation**: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.

- ► [Nisan-Wigderson-95]:  $\Sigma \Pi^d \Sigma$  circuits, sum of terms of the form  $\ell_1 \cdots \ell_d$ . **Key observation**: There are "few" linearly independent partial derivatives of  $\ell_1 \cdots \ell_d$ .
- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . **Key observation**: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.



• [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.



High degree

mons.

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.





- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.



- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.



 IDEA 1 - RANDOM RESTRICTIONS: Randomly set a small number of variables to zero

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.



 IDEA 1 - RANDOM RESTRICTIONS: Randomly set a small number of variables to zero

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.



- IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
- IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- ▶ hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_b$  with total degree d.



- IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
- IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

- [Gupta-Kamath-Kayal-Saptharishi-12]:  $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$  circuits, terms of the form  $Q_1 \cdots Q_{\sqrt{d}}$ . Key observation: Many *low-degree* combinations of partial derivatives are zero if all  $Q_i$ s have low degree.
- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. ΣΠΣΠ circuits: terms like Q<sub>1</sub>…Q<sub>b</sub> with total degree d.



- IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
- IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. ΣΠΣΠ circuits: terms like Q<sub>1</sub> ··· Q<sub>b</sub> with total degree d.
  - IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
  - IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

- ► [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom.  $\Sigma\Pi\Sigma\Pi$  circuits: terms like  $Q_1 \cdots Q_k$  with total degree d.
  - IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
  - IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

$$\Gamma(f) = \dim(\mathbf{x}^{=\ell}\partial^{=k}(f))$$

Dimension of shifted partials of f.

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. ΣΠΣΠ circuits: terms like Q<sub>1</sub> ··· Q<sub>b</sub> with total degree d.
  - IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
  - IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

$$\Gamma(f) = \dim(\mathbf{x}^{=\ell}\partial^{=k}(\rho(f)))$$

Dimension of shifted partials of a random restriction of f.

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]:
   hom. ΣΠΣΠ circuits: terms like Q<sub>1</sub> ··· Q<sub>b</sub> with total degree d.
  - IDEA 1 RANDOM RESTRICTIONS: Randomly set a small number of variables to zero
  - IDEA 2 MULTILINEAR PROJECTION: Discard all non-multilinear monomials

$$\Gamma(f) = \dim(\operatorname{mult} \circ \mathbf{x}^{=\ell} \partial^{=k}(\rho(f)))$$

Dimension of projected shifted partials of a random restriction of f.

 [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. ΣΠΣΠ circuits: terms like Q<sub>1</sub> ··· Q<sub>b</sub> with total degree d.

$$\Gamma(f) = \dim(\operatorname{mult} \circ \mathbf{x}^{=\ell} \partial^{=k}(\rho(f)))$$

Dimension of projected shifted partials of a random restriction of f.

 [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. ΣΠΣΠ circuits: terms like Q<sub>1</sub> ··· Q<sub>b</sub> with total degree d.

$$\Gamma(f) = \dim(\operatorname{mult} \circ \mathbf{x}^{=\ell} \partial^{=k}(\rho(f)))$$

Dimension of projected shifted partials of a random restriction of f.



#### $\Sigma\Pi\Sigma\Pi\Sigma$



#### ΣΠΣΠΣ

#### Sums of products of depth-3 circuits

> Projected shifted partials heavily rely on *monomials* and *sparsity*.

#### ΣΠΣΠΣ

- Projected shifted partials heavily rely on monomials and sparsity.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity.

#### ΣΠΣΠΣ

- Projected shifted partials heavily rely on monomials and sparsity.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity. If bottom sparsity controlled, similar technique works.

#### $\Sigma \Pi \Sigma \Pi \Sigma^{n^{0.5-\epsilon}}$

- Projected shifted partials heavily rely on monomials and sparsity.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity. If bottom sparsity controlled, similar technique works. [Bera-Chakrabarti-15]

#### $\Sigma \Pi \Sigma \Pi \Sigma^{n^{1-\epsilon}}$

- Projected shifted partials heavily rely on monomials and sparsity.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity. If bottom sparsity controlled, similar technique works. [Bera-Chakrabarti-15], [Kayal-Saha-15]

#### ΣΠΣΠΣ

- Projected shifted partials heavily rely on monomials and sparsity.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity. If bottom sparsity controlled, similar technique works.

#### ΣΠΣΠΣ

- Projected shifted partials heavily rely on *monomials* and *sparsity*.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity. If bottom sparsity controlled, similar technique works.
- What is the right analogue of 'support' here?

#### ΣΠΣΠΣ

- Projected shifted partials heavily rely on *monomials* and *sparsity*.
- Even a single term  $(x_1 + \dots + x_n)^d$  can mess up sparsity. If bottom sparsity controlled, similar technique works.
- What is the right analogue of 'support' here?
- Answer: The rank.

# Lifting to depth five

Types of products of linear polynomials:

Low degree products.

High degree products.
Types of products of linear polynomials:



Types of products of linear polynomials:



Types of products of linear polynomials:



 IDEA 1 - MULTILINEARIZATION: Looking at only evaluations on {0,1}<sup>n</sup>.

Types of products of linear polynomials:



► IDEA 1 - MULTILINEARIZATION: Looking at only evaluations on  $\{0,1\}^n$ . Low rank  $\implies$  low degree as  $x_i^2 = x_i$  on  $\{0,1\}^n$ .

Types of products of linear polynomials:



► IDEA 1 - MULTILINEARIZATION: Looking at only evaluations on  $\{0,1\}^n$ . Low rank  $\implies$  low degree as  $x_i^2 = x_i$  on  $\{0,1\}^n$ .

Types of products of linear polynomials:



► IDEA 1 - MULTILINEARIZATION: Looking at only evaluations on  $\{0, 1\}^n$ . Low rank  $\implies$  low degree as  $x_i^2 = x_i$  on  $\{0, 1\}^n$ . (Multilinear projection is  $x_i^2 = 0$ .)

Types of products of linear polynomials:



- ► IDEA 1 MULTILINEARIZATION: Looking at only evaluations on  $\{0, 1\}^n$ . Low rank  $\implies$  low degree as  $x_i^2 = x_i$  on  $\{0, 1\}^n$ . (Multilinear projection is  $x_i^2 = 0$ .)
- ▶ IDEA 2 HIGH-RANK EVALUATIONS OVER  $\mathbb{F}_q$ : Over a small field, large rank terms almost always evaluate to zero.

Types of products of linear polynomials:



- ► IDEA 1 MULTILINEARIZATION: Looking at only evaluations on  $\{0, 1\}^n$ . Low rank  $\implies$  low degree as  $x_i^2 = x_i$  on  $\{0, 1\}^n$ . (Multilinear projection is  $x_i^2 = 0$ .)
- ▶ IDEA 2 HIGH-RANK EVALUATIONS OVER  $\mathbb{F}_q$ : Over a small field, large rank terms almost always evaluate to zero.





WHAT WE NEED NOW:











### *Theorem* ([Kumar-Saptharishi-15])

There is a polynomial  $f \in VNP$  such that, for every finite field  $\mathbb{F}_q$ , any hom.  $\Sigma\Pi\Sigma\Pi\Sigma$  circuit computing f over  $\mathbb{F}_q$  must have size  $\exp(\Omega_q(\sqrt{d}))$ .

### *Theorem* ([Kumar-Saptharishi-15])

There is a polynomial  $f \in VNP$  such that, for every finite field  $\mathbb{F}_q$ , any hom.  $\Sigma \Pi \Sigma \Pi \Sigma$  circuit computing f over  $\mathbb{F}_q$  must have size  $\exp(\Omega_q(\sqrt{d}))$ .

#### **REMARKS:**

 The dual evaluation perspective was also adopted in [Grigoriev-Karpinski-98] for ΣΠΣ circuits over finite fields.

### *Theorem* ([Kumar-Saptharishi-15])

There is a polynomial  $f \in VNP$  such that, for every finite field  $\mathbb{F}_q$ , any hom.  $\Sigma \Pi \Sigma \Pi \Sigma$  circuit computing f over  $\mathbb{F}_q$  must have size  $\exp(\Omega_q(\sqrt{d}))$ .

#### **REMARKS:**

- The dual evaluation perspective was also adopted in [Grigoriev-Karpinski-98] for ΣΠΣ circuits over finite fields.
- The proof ought to work for VP also but we don't have a tight enough analysis (yet).

### *Theorem* ([Kumar-Saptharishi-15])

There is a polynomial  $f \in VNP$  such that, for every finite field  $\mathbb{F}_q$ , any hom.  $\Sigma \Pi \Sigma \Pi \Sigma$  circuit computing f over  $\mathbb{F}_q$  must have size  $\exp(\Omega_q(\sqrt{d}))$ .

#### **REMARKS:**

- The dual evaluation perspective was also adopted in [Grigoriev-Karpinski-98] for ΣΠΣ circuits over finite fields.
- The proof ought to work for VP also but we don't have a tight enough analysis (yet).
- Shows why the [Kayal-Limaye-Saha-Srinivasan-14, Kumar-Saraf-14] technique couldn't separate depth five from depth four.

### *Theorem* ([Kumar-Saptharishi-15])

There is a polynomial  $f \in VNP$  such that, for every finite field  $\mathbb{F}_q$ , any hom.  $\Sigma \Pi \Sigma \Pi \Sigma$  circuit computing f over  $\mathbb{F}_q$  must have size  $\exp(\Omega_q(\sqrt{d}))$ .

#### **REMARKS:**

- The dual evaluation perspective was also adopted in [Grigoriev-Karpinski-98] for ΣΠΣ circuits over finite fields.
- The proof ought to work for VP also but we don't have a tight enough analysis (yet).
- Shows why the [Kayal-Limaye-Saha-Srinivasan-14, Kumar-Saraf-14] technique couldn't separate depth five from depth four.
- Other fields?

"I lost you a while back ... what do I need to remember?"

• Two possible ways to prove  $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

"I lost you a while back ... what do I need to remember?"

• Two possible ways to prove  $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

• We already have  $n^{\Omega(\sqrt{d})}$  lower bounds in both cases, in fact for slightly more general classes!

"I lost you a while back ... what do I need to remember?"

• Two possible ways to prove  $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

- We already have n<sup>Ω(√d)</sup> lower bounds in both cases, in fact for slightly more general classes!
- Some stuff happened with depth five circuits over small fields.

"I lost you a while back ... what do I need to remember?"

• Two possible ways to prove  $VP \neq VNP$ :

Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi\Sigma^{\sqrt{d}}$  circuits over  $\mathbb{Q}$ . Prove an  $n^{\omega(\sqrt{d})}$  lower bound for  $\Sigma\Pi^{\sqrt{d}}\Sigma\Pi^{\sqrt{d}}$  circuits.

- We already have n<sup>Ω(√d)</sup> lower bounds in both cases, in fact for slightly more general classes!
- Some stuff happened with depth five circuits over small fields.
- You should be super-excited by all this!

## Thank you

