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ABSTRACT

We present Spine, an efficient algorithm for finding the
“backbone” of an influence network. Given a social graph
and a log of past propagations, we build an instance of the
independent-cascade model that describes the propagations.
We aim at reducing the complexity of that model, while
preserving most of its accuracy in describing the data.

We show that the problem is inapproximable and we
present an optimal, dynamic-programming algorithm, whose
search space, albeit exponential, is typically much smaller
than that of the brute force, exhaustive-search approach.
Seeking a practical, scalable approach to sparsification, we
devise Spine, a greedy, efficient algorithm with practically
little compromise in quality.

We claim that sparsification is a fundamental data-
reduction operation with many applications, ranging from
visualization to exploratory and descriptive data analysis.
As a proof of concept, we use Spine on real-world datasets,
revealing the backbone of their influence-propagation net-
works. Moreover, we apply Spine as a pre-processing step
for the influence-maximization problem, showing that com-
putations on sparsified models give up little accuracy, but
yield significant improvements in terms of scalability.
Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms
Keywords: Social Networks, Influence, Propagation

1. INTRODUCTION
For many scenarios of network analysis, sparsification is a

fundamental data-reduction operation that equips the data
analyst with the ability to visualize, explore, digest, and in-
terpret more easily the available data. In addition, sparsifi-
cation helps in reducing the noise in the data and in avoiding
over-fitting, thus allowing to build more accurate models.
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In this paper we study a sparsification framework that is
appropriate for analyzing information propagation in social
networks. We aim at eliminating a large number of links
in the network, and preserving only the links that play an
important role on how information propagates. The impor-
tance of a link is measured by its ability to explain observed
propagations. Sparsifying a network with respect to a log of
“information actions” can be seen as revealing the backbone

of information propagation in the network.
A high-level description of our approach is the following.

We are given a social network, that is, a set of “friendship”
links or “follower-followee” links. Additionally, we assume
that we are given a log of actions performed by the nodes
of the network. Such actions may include posting informa-
tion “memes”, joining an online community or an interest
group, buying a paid subscription in an on-line service, and
so on. We assume that those actions have propagated in
the network via the independent cascade model [18]. The
maximum likelihood parameters of this model can be found
for instance by using the EM algorithm of Saito et al. [28].
Given the parameters we formulate the sparsification prob-
lem, which is the focus of this paper: we ask to preserve the
k most important links in the model, i.e., the set of k links
that maximize the likelihood of the observed data. Here
k might be an input parameter specified by the data ana-
lyst, or alternatively k might be set automatically following
common model-selection practice.

Our framework has a number of interesting applications.

Propagation characterization: Sparsifying separately
different information topics can help us answer questions
such as: “What distinguishes the way important news prop-
agate, from the way funny “memes” do?” or “Is there any
structural difference between the backbone of actual news
and that of false rumors?”
Feed ranking: As users in social networks receive a contin-
uous feed of information, ranking the most interesting feeds
is becoming an important problem [15]. Sparsification pro-
vides a useful feature in this ranking problem by highlighting
the most important links.
Viral marketing: Finding the set of users to target in or-
der to maximize the spread of influence is a problem that
has received a lot of attention, yet there are still serious
computational challenges [3, 4]. As we show in Section 7,
sparsification yields significant improvement for this prob-
lem, in terms of efficiency and scalability, while sacrificing
little in terms of accuracy.

Even though there has been a lot of work recently on
studying information propagation, mostly devoted either to



empirical analysis of real-world propagations [1, 14, 19, 22],
or to devise methods for influence maximization [6, 18, 27],
not much effort has been devoted to develop techniques to
mine large logs of propagation traces. On the other hand,
there is extensive literature on the problem of network sim-
plification, but the scenarios assumed are different than the
problem we study in this paper. We review this literature
in the next section.

Our contributions are summarized as follows.

• Given a social network and a log of actions, we study
the problem of pruning the network to a prefixed ex-
tent while maximizing the likelihood of generating the
propagation traces in the log (Sections 3 and 4).

• We show that our problem is NP-hard to approximate
within any multiplicative factor (Section 4).

• We show that sparsification can be decomposed into
a number of subproblems equal to the number of the
nodes in the network. We then present an exponential,
but optimal, dynamic programming algorithm, whose
search space is typically much smaller than the brute
force one, but still impracticable for graphs having
nodes with a large in-degree (Section 5.1).

• We devise Spine (Sparsification of influence networks),
a greedy algorithm that achieves efficiency with practi-
cally little compromise in quality. Spine is structured
in two phases. During the first phase it selects a set
of arcs D0 that yields a finite log-likelihood; during the
second phase, it greedily seeks a solution of maximum
log-likelihood. The solution returned by Spine is guar-
anteed to be “close” to the optimal among the subnet-
works that contain arcs D0 (Section 5.2).

• We show that Spine identifies efficiently sparse net-
works of high or even optimal likelihood (Section 6).

• We apply Spine as a pre-processing step for the problem
of influence maximization, showing that computations
on the sparse network give up little accuracy, but yield
significant improvements in terms of efficiency and scal-
ability (Section 7).

2. RELATED WORK
The study of information diffusion in social networks has a

long history in social sciences. Early work studied the adop-
tion of medical and agricultural innovations [5, 32]. Later,
marketing researchers investigated the “word-of-mouth” dif-
fusion process for viral marketing [2, 9, 17, 23].

From a computational perspective, a basic problem in vi-
ral marketing is that of influence maximization: given a so-
cial network, find k nodes to target in order to maximize
the spread of influence. The first algorithmic treatment
of the problem was provided by Domingos and Richard-
son [6, 27], who modeled the diffusion process in terms of
Markov random fields, and proposed heuristic solutions to
the problem. Subsequently, Kempe et al. [18] studied the
influence-maximization problem for a different family of in-
fluence models. Part of their contribution was to provide ap-
proximation algorithms for the independent cascade model,
which we also adopt in this paper. Recent work [3, 4, 21]
improves the efficiency of influence maximization.

Conceptually, our work can be collocated with works on
network simplification, the goal of which is to identify sub-
networks that preserve properties of a given network. Toivo-

nen et al. [31, 33], for instance, prune edges while keep-
ing the original quality of best paths between all pairs of
nodes. Here, quality is defined on path-based concepts, such
as shortest path or maximum flow. Misiolek and Chen [24]
prune arcs while maintaining the source-to-sink flow for each
pair of nodes. In the theory community, the notion of k-
spanner refers to a sparse subgraph that maintains the dis-
tances in the original graph up to a factor of k. The prob-
lem is to find the sparsest k-spanner [7]. In pathfinder net-

works [26, 29] the approach is to select weighted edges that
do not violate the triangular inequality. Moreover, Fung et
al. [35] study cut-sparsifiers, i.e. subsets of edges that pre-
serve cuts up to a multiplicative error.

Serrano et al. [30], and Foti et al. [8], focus on weighted
networks and select edges that represent statistically signifi-
cant deviations with respect to a null model. In a similar set-
ting, Arenas et al. [34] select edges that preserve modularity,
a measure that quantifies quality of commumity detection.

The approach we take in this paper is substantially differ-
ent than the approach considered in the above papers. One
major difference is that the problem of sparsification is de-
fined in terms of observed activity in the network, and not
just in terms of the structural properties of the network.

A recent line of work, perhaps the closest to ours, assumes
instead that the propagations are known, but the network
is not [10, 11]. In their research, Gomez-Rodriguez et al.
assume that connections between nodes cannot be observed,
and they use observed traces of activity to infer a sparse,
“hidden”network of information diffusion. Although similar
to the sparsified networks we produce, in their setting the
links are only inferred and might potentially not exist in
the real, but unobserved, network. Instead, in our setting,
connections between nodes are explicitly declared and known

(as in current online social network services, for example),
and our goal is to find the most important connections, and
to obtain the network backbone.

Papers that share our approach of simultaneously mining
the social graph and network activity include the work of
Goyal et al. [12], on extracting frequent patterns of influence,
and the works of Goyal et al. [13] and Saito et al. [28], on
learning influence models from observed activity. However,
they do not consider any notion of sparsification or other
summarization operation.

3. INFLUENCE MODEL
Consider a social network G = (V,D), where nodes V

correspond to individuals and directed arcs D between nodes
represent social connections. For two nodes u and v in V , arc
(u, v) denotes that individual v knows, is socially connected
to, or follows individual u. Individuals perform actions, and
actions can propagate across the network. For example, so-
cial network users who read a news story on the New York
Times may decide to share the story with their friends—
who, in turn, may decide to spread the news to their own
friends, and so on, contributing to the propagation of the
story across the network. In this paper, we assume that
the propagation of actions follows the independent cascade
model [18]. According to this model, every arc (u, v) in D is
associated with a probability p(u, v) and propagations un-
fold in discrete time steps.

To be specific, let us consider the propagation of one ac-
tion α across the network. According to the independent
cascade model, if node u performs an action α in time step



t and node v follows u, then u makes a single attempt to in-
fluence v, and succeeds with probability p(u, v). The prob-
ability of success is independent of other nodes that may
attempt to influence v. If it is successful, and v has not pre-
viously performed α, then v performs α in time step (t+1).
Note that, according to this model, several nodes may at-
tempt to influence v, but v may perform α at most once.

Additionally, we assume that propagations are initiated by
a special node Ω ∈ V (Figure 1(a)) that has the following two
properties: (i) it performs α before any other node, and (ii)
is followed by all other nodes in V . Node Ω models sources of
influence that are external to the network, and thus p(Ω, v)
is the probability that a propagation starts from node v.

The independent cascade model generates sequences of
activations, or traces, as we call them. Traces of different
actions are generated independently. Note that, given the
trace of action α, it may not be possible to tell which node
influenced a particular node v to perform α, since more than
one node may have attempted to do so. In the example of
Figure 1(b), for instance, one of nodes: u1 or u2, succeeded
to influence v. We say that u1 and u2 possibly influenced v.
On the other hand, neither u3 nor u4 could have influenced v,
because then, according to the independent cascade model,
v would have performed α at time t.

Every trace generated by the independent cascade model
is associated with a likelihood value. Consider the trace
of action α. Let F+

α (v) be the set of nodes that possibly

influenced v, and F−
α (v) the set of nodes that definitely failed

to influence v. Then, the likelihood Lα(G) of the trace can
be written as

Lα(G) =
∏

v∈V

P+
α (v) · P−

α (v), (1)

where

P+
α (v) =

{

1 , if F+
α (v) = ∅,

1−
∏

u∈F
+
α (v)

(1− p(u, v)) , otherwise

expresses the likelihood that at least one of the nodes in
F+
α (v) succeed to influence v, and

P−
α (v) =

∏

u∈F
−
α (v)

(1− p(u, v)).

the likelihood that all nodes in F−
α (v) fail. For the rest of

the paper, following common practice, we opt to work with
log-likelihood, due to its better numerical behavior

logLα(G) =
∑

v∈V

(

logP+
α (v) + logP−

α (v)
)

. (2)

We now describe how to estimate the probabilities p(u, v)
of the independent cascade model from a set of traces. Con-
sider a set of actions A. For each action α ∈ A we observe
its propagation trace, and assume that all traces are gen-
erated by the same model. Following [28], the probability
values p(u, v) that maximize the total log-likelihood

logL(G) =
∑

α∈A

logLα(G)

can be computed using the following iterative formula

p(k+1)(u, v) =
p(k)(u, v)

|A+
v|u|+ |A−

v|u|

∑

α∈A
+

v|u

1

P+
α (v)

, (3)

(a) Social Network (b) Trace

Figure 1: (a) Social network. An arc (u, v) indicates
that v is a follower of u and repeats u’s actions with
probability p(u, v). Node Ω initiates propagations of
actions and influences all nodes. (b) Action trace.
Solid-line arrows indicate possible influence, while
dash-line arrows indicate failed influence attempts.

where actions in set

A+
v|u = {α ∈ A | F+

α (v) ∋ u}

have traces where u possibly influenced v, and actions in set

A−
v|u = {α ∈ A | F−

α (v) ∋ u}

have traces where u definitely failed to influence v.
According to the independent cascade model, actions

propagate in discrete time steps. In real-world scenarios,
however, users can freely choose when to propagate actions
of the people they follow. Therefore, to use the independent
cascade model in practice and estimate probabilities p(u, v)
in real-world datasets, we can not rely on discrete time steps.

Figure 2: Delay Threshold

Instead, we may use a delay threshold ∆t (Figure 2) for
this purpose. Specifically, suppose that node v performs
action α at time tα(v). Then, the set F+

α (v) of nodes that
possibly influenced v are the nodes that performed action α
before v and within ∆t time, that is,

F+
α (v) = {u : (u, v) ∈ D | tα(v)−∆t ≤ tα(u) < tα(v)}.

In the scenario of Figure 2, for example, F+
α (v) = {u1, u2}.

The set F−
α (v) of nodes that definitely failed to influence v

is defined similarly:

F−
α (v) = {u : (u, v) ∈ D | tα(u) < tα(v)−∆t}.

In the scenario of Figure 2, for example, F−
α (v) = {u3, u4}.

Note that if v does not perform α, then we write tα(v) =
∞ and have F+

α (v) = ∅. Note also that, in the special case
of ∆t = ∞, always one of the two sets F+

α (v) and F−
α (v) is

empty. Specifically, if v does not perform α, then F+
α (v) = ∅,

while if it does, then F−
α (v) = ∅.



4. SPARSIFICATION
Given an influence model learned (as in Section 3) from

a social network G = (V,D) and propagation traces for a
set of actions A, our goal is to identify a “backbone” of arcs
that are most important for the propagation of actions A.
Specifically, we aim to identify a sparse subnetwork Gs of
G, that consists of the k arcs that are most likely to have
generated the observed traces of actions A.

Formally, we define a network Gs = (V,Ds) to be a sparse

subnetwork of G = (V,D) if its arcs Ds are a subset of D,
Ds ⊆ D, and the probabilities ps(u, v) are equal with the
corresponding probabilities p(u, v) of the network G, that
is, ps(u, v) = p(u, v), for all (u, v) in Ds. The problem of
sparsifying network G is defined as follows.

Problem 1 (Sparsification). Given a network G =
(V,D) with probabilities p(u, v) on the arcs, a set A of

action traces, and an integer k, find a sparse subnetwork

Gs = (V,Ds) of G of size |Ds| = k, so that the log-likelihood

function logL(Gs) is maximized.

Notice that Problem 1 is not solved by selecting the k
arcs (u, v) in D with the largest probability values p(u, v).
As a counter-example, consider the network G = (V,D) and
traces of actions A = {α1, α2, α3}, shown in Figure 3. Based
on the three traces, we obtain the maximum likelihood es-
timates p(u1, v) = 1.0 and p(u2, v) = 0.5. Then, for k = 3,
the best sparse model Gs = (V,Ds) is the one with

Ds = {(Ω, u1), (Ω, u2), (u2, v)} = D \ {(u1, v)}, (4)

even though p(u2, v) < p(u1, v). To see why, notice that, for
example, the alternative option of

Ds = {(Ω, u1), (Ω, u2), (u1, v)} = D \ {(u2, v)} (5)

leads to zero likelihood (logL(Gs) = −∞). This is because
the trace of action α2 is impossible without arc (u2, v). On
the other hand, all three traces are possible in the absence
of the arc (u1, v).

Figure 3: Sparsification is not solved by selecting
the k arcs with largest probability value.

Complexity. By the definition of the independent cascade
model, for a sparse network Gs = (V,Ds) to have finite log-
likelihood, logL(Gs) > −∞, it is necessary that the traces
of all actions A are possible for its set of arcs Ds. This means
that if node v performs an action α in A, then Ds must in-
clude an arc from at least one of the nodes F+

α that possibly
influenced v. Our argument is formally stated below.

Lemma 1. Deciding whether Problem 1 has finite solution

is NP-hard.

Proof. We obtain a reduction from the Hitting Set prob-
lem. We first remind the Hitting Set problem: Given a
collection of sets S = {S1, . . . , Sm} over a universe of n ele-
ments U = {1, . . . , n} (i.e., Sj ⊆ U), a hitting set for S is a

set H ⊆ U that intersects all sets in S , that is, H ∩ Sj 6= ∅
for all j = 1, . . . ,m. Given a set collection S and an integer
k, it is NP-hard to decide whether there is a hitting set H
for S that has size at most |H | ≤ k.

Now, consider an instance of the Hitting Set problem,
i.e. consider a collection S = {S1, . . . , Sm} and an integer k.
We create an instance of our problem as follows. Our graph
G = (V,D) has n + 1 nodes, namely, V = U ∪ {n + 1} =
{1, . . . , n, n+ 1}. The nodes from 0 to n have no ancestors,
while the node n+1 has all nodes from 0 to n as ancestors.
Thus D = {(i, n+ 1) | i = 1, . . . , n}. For all the edges in D
we set p(i, n+1) = 1. Next, for each set Sj ∈ S we consider
an action α that was performed by nodes Sj ∪ {n+ 1}.

First consider a hitting set H of S , with |H | ≤ k. Take the
sparsified graph Gs = (V,Ds) with Ds = {(i, n+1) | i ∈ H}.
It is |Ds| ≤ k. Furthermore for each action α ∈ A the set Ds

contains at least one edge from a parent of node n+ 1 that
is also influenced by α. Given that all arcs have probability
1 it follows that the probability P+

α (n+1) is equal to 1, and
consecutively the total log-likelihood is finite.

Conversely, for any sparsified graph with at most k edges
and finite log-likelihood it should be the case that for each
action α ∈ A the set Ds contains at least one edge from a
parent of node n + 1 that also performed α. Thus the set
H = {i | (i, n+ 1) ∈ Ds} is a hitting set for S .

Lemma 1 leads to the following hardness results.

Theorem 1. Problem 1 is NP-hard.

Theorem 2. Approximating Problem 1 up to any multi-

plicative factor is NP-hard.

The latter Theorem follows from the simple observation that
obtaining a multiplicative-factor approximation is at least as
difficult as obtaining a finite solution. Theorem 1 is a special
case of Theorem 2.

5. ALGORITHMS

5.1 An optimal algorithm
A brute-force approach to acquire an optimal solution

to Problem 1 is to enumerate all possible subsets of arcs
Ds ⊆ D of size k, and select the network Gs = (V,Ds)
with maximum log-likelihood logL(Gs). This approach is
exponential in the size of D and obviously does not scale.

Instead, we describe an optimal, dynamic programming
algorithm, OptimalSparse, that makes relatively limited
use of exhaustive enumeration. The algorithm is based on
the observation that an optimal solution can be obtained by
dividing Problem 1 into |V | sub-problems, where V is the
set of nodes of G, and combining their solutions. To see this,
let us re-write log-likelihood as

logL(G) =
∑

α∈A

logLα(G) =

=
∑

α∈A

∑

v∈V

(

logP+
α (v) + logP−

α (v)
)

=
∑

v∈V

∑

α∈A

(

logP+
α (v) + logP−

α (v)
)

.

(6)

Observe that the inner sum of the above formula corresponds
to a single node v. Also, recall that the probabilities P+

α (v)
and P−

α (v) are “local” to node v, meaning that they depend



only on influence probabilities on arcs from the parent nodes
of v in G. Denote the set of these arcs by Dv, and observe
that we can compute P+

α (v) and P−
α (v) for an arbitrary

subset Xv ⊆ Dv simply by omitting probabilities on edges
not present in Xv . This way we can define

λ(Xv) =
∑

α∈A

(

logP+
α (v|Xv) + logP−

α (v|Xv)
)

, (7)

for Xv ⊆ Dv. The log-likelihood of the full model can thus
be written as logL(G) =

∑

v
λ(Dv). Therefore we consider

the following sub-problem for each node v ∈ V .

Problem 2. Given an integer b, identify a subset of arcs

Db
v ⊆ Dv of size b, such that λ(Db

v) is maximized.

Problem 2 is solved by exhaustive enumeration of subsets
Db

v ⊆ Dv of size b. The solution space increases exponen-
tially with the size of Dv, but is typically much smaller than
that of the brute-force approach, which increases exponen-
tially with the size of D.

Algorithm OptimalSparse uses dynamic programming
to compute an optimal solution Ds to Problem 1 from opti-
mal solutions of Problem 2. Specifically, let V = {v1, v2, . . .}
be an enumeration of the nodes. For each node vi, consider
the solution Db

vi
to Problem 2 for all integers b ∈ [1, k] (Al-

gorithm 1, Lines 1-3). OptimalSparse then proceeds se-
quentially over nodes V (Algorithm 1, Line 5). At the end
of the i-th step, it has processed nodes v1, v2, . . . , vi and, for
each integer m ∈ [1, k] (Algorithm 1, Line 6) it identifies
one number b for each node v ∈ {v1, v2, . . . , vi} such that
b1 + b2 + . . .+ bi = m and the sum

Λ(i,m) = λ(Db1
v1
) + λ(Db2

v2
) + . . .+ λ(Dbi

vi
)

is maximized (Algorithm 1, Lines 7-8). By construction,
Λ(|V |, k) contains the maximum log-likelihood value for
Problem 1. The optimal solution Ds is computed with stan-
dard back-tracking (not described in Algorithm 1, in interest
of brevity).

Algorithm 1 OptimalSparse

1: for i = 1 to |V | do
2: for b = 1 to k do
3: compute optimal Db

vi
(Problem 2)

4: array Λ, initialize Λ(0, m) = 0; m = 1 to k
5: for i = 1 to |V | do
6: for m = 1 to k do
7: bi := argmax{λ(Dbi

vi
) + Λ(i− 1,m− bi)}

8: Λ(i,m) := λ(Dbi
vi
) + Λ(i− 1,m− bi)

9: return Λ(|V |, k)

5.2 A greedy algorithm: Spine
OptimalSparse follows a more sophisticated approach

than brute-force, but is still prohibitively expensive for
graphs that have nodes with large in-degree. In this section,
we describe Spine, a greedy algorithm for Problem 1. Al-
though Problem 1 is inapproximable in the general case, we
find experimentally that the quality of the results obtained
by Spine is comparable to the that of OptimalSparse.

Spine produces a solution Ds to Problem 1 in k steps,
adding to Ds one arc at each step. Those k steps are di-
vided in two phases: during the first phase, Spine aims
to identify a solution D0 of finite log-likelihood; during the

second phase, it greedily seeks a solution of maximum log-
likelihood. This two-phase approach is inspired by the ob-
servation that Problem 1 is at least as difficult as identifying
a solution of finite log-likelihood.

First phase. Following the discussion on complexity of
Problem 1 (Section 4), we look for a solution with finite
logL by solving an instance of Hitting Set — that is, for
each node v ∈ V we seek for a hitting set of collection

C(v) = {D+
α (v) 6= ∅ ; α ∈ A}.

As Hitting Set is NP-hard, we employ the greedy approxi-
mation algorithm described in [16] (Algorithm 2, Lines 1-8).
According to that algorithm, arcs (u, v) are ordered by the
number n(u, v) of actions for which u possibly influenced v

n(u, v) =
∣

∣{D+
α (v) ∈ C(v) ; (u, v) ∈ D+

α (v)}
∣

∣ . (8)

At each step, the arc (u, v) with the maximum number
n(u, v) is selected (Algorithm 2, Lines 6-7) and all sets
D+

α (v) that contain (u, v) are ignored for the rest of this
process (Algorithm 2, Line 8). The first phase ends when
either the limit of k arcs is reached, or λ(Db

v) for b ≤ k
selected arcs becomes finite for the first time.

Second phase. Let D0 be the set of arcs selected by the
end of the first phase, and let G0 = (V,D0) be the asso-
ciated sparse network. If |D0| < k, then we still need to
select k− |D0| more arcs. One viable approach to select the
remaining k−|D0| arcs is to continue in a fashion similar to
the OptimalSparse algorithm: divide the problem into |V |
subproblems, one for each node in the graph, solve optimally
each subproblem for all values of b = 1, . . . , k − |D0|, and
then combine the solutions of the subproblems with dynamic
programming. However, due to the exhaustive search and
the dynamic programming, such an approach would not be
scalable. To obtain a scalable solution we propose to speed
up the computation by replacing both steps – exhaustive
search and the dynamic programming – with a greedy pro-
cess. We choose the remaining k − |D0| arcs by selecting
greedily at each step the arc that offers the largest increase
in log-likelihood (Algorithm 2, Lines 9-15).

For a detailed description, let Dv and λ be defined as
above, and consider a table X, where Xv(i) is the subset of
Dv that the greedy algorithm would add the ith step when
maximizing λ. More formally, we have

Xv(i) =

{

∅ if i = 0,
Xv(i− 1) ∪ ev(i) otherwise,

where ev(i) = argmaxe∈Uv
{λ

(

Xv(i − 1) ∪ e
)

}, and Uv =
Dv \Xv(i− 1). Also, let Hv(i) denote the marginal gain for
λ when the ith edge is added, that is, let

Hv(i) =

{

0 if i = 0,
λ(Xv(i))− λ(Xv(i− 1)) otherwise.

Spine maintains the Xv and Hv structures for every v, and
at every step chooses the v∗ and i∗ that maximize Hv∗(i∗)
(line 13). The edge ev∗(i∗) will be added to the solution, and
we compute Xv∗ (i∗+1) and Hv∗(i∗+1). Computing Xv(i+
1) given Xv(i) is an O(|Dv |) operation, while inserting and
extracting from Q are O(log |V |). The worst-case complexity
of the 2nd phase of Spine is thusO

(

k(maxv(|Dv |)+log |V |)
)

.
We have the following approximation guarantee.



Lemma 2. Let Dopt be a superset of D0 that contains k
arcs and that induces a subgraph Gopt = (V,Dopt) of G with

maximum log-likelihood. Also, let Dsp by the set of arcs

returned by Spine and let Gsp = (V,Dsp) be the induced

subgraph. That is, Dsp is also a superset of D0 and it has k
arcs. Then, provided that logL(G0) > −∞, we have

logL(Gsp) ≥
1

e
logL(G0) + (1−

1

e
) logL(Dopt). (9)

Proof. We use a well-known theorem by Nemhauser et
al. [25] on maximizing submodular set functions. A set
function f is submodular, when for any S ⊆ T we have
f(S ∪ u) − f(S) ≥ f(T ∪ u) − f(T ). The theorem in [25]
states that for non-negative set functions f , with f(∅) = 0,
we have f(XA

k ) ≥ (1− 1/e)f(X∗
k ), where X∗

k is the optimal
k-sized solution, and XA

k a solution likewise of size k that is
constructed by starting from ∅, and at each step adding the
item that maximizes the increase in the value of f . Observe
that this greedy strategy is also used by Spine when adding
edges to the sparse model.

A direct application of this result is impossible, as log-
likelihood is negative, and not equal to zero for an empty
solution. However, we consider the following modification:
Denote by LL(G) the log-likelihood logL(G), and let

g(S) = LL(G0 ∪GS)− LL(G0), (10)

where S ⊂ D is a set of edges, G0 is the graph consisting
of the edges found in the 1st phase of Spine, and GS is the
graph corresponding to the edges in the set S. Furthermore,
observe that S can be seen as the set of edges added by
Spine in the 2nd phase. Clearly g(S) is non-negative, and
g(∅) = 0. We can also show the following lemma, whose
proof can be found in the extended version of this paper.

Lemma 3. Function g(S) is submodular.

Now we apply the result of [25] directly, and have

g(SA) ≥ (1− 1/e)g(S∗). (11)

Expanding g(S), inequality (11) gives

LL(Gsp) ≥ (1− 1/e) (LL(Gopt)− LL(G0)) + LL(G0)

=
1

e
LL(G0) + (1−

1

e
)LL(Gopt),

where Gsp = G0 ∪ GA is the solution returned by Spine,
and Gopt = G0 ∪ G∗ is the optimal solution that contains
G0 as a subset, which concludes the proof of Lemma 2.

Lemma 2 guarantees that the solution returned by Spine
is close to the optimal among the subnetworks that contain
arcs D0. Notice that this result is not a true approximation
result for Problem 1. First, Lemma 2 does not associate
logL(Gsp) with logL(Gs), the log-likelihood of the optimal
solution, and secondly, it is true under the provision that
logL(G0) > −∞, i.e., that the first phase of Spine“escapes”
infinite log-likelihood before the k-th step.

A note on parallelization. In practice we have observed
that the total execution time of Spine is dominated by Phase
2 by at least an order of magnitude. Therefore we only con-
centrate on optimizing this part of the algorithm. Note that
the computationally involved part in the 2nd phase is up-
dating the table X on line 14. In Algorithm 2 we compute

Algorithm 2 Spine

1: {First Phase}
2: for i = 1 to |V | do
3: D0 := ∅
4: C(v) := {D+

α (v) 6= ∅ ; α ∈ A}
5: while |D0| < k and logL(G0(V,D0) = −∞ do
6: find u : (u, v) ∈ D with max n(u, v)
7: D0 := D0 ∪ {(u, v)}
8: C(v) := C(v)− {all D+

α (v) that contain (u, v)}

9: {Second Phase}
10: Dsp := D0, Q := empty priority queue
11: ∀v ∈ V : compute Xv(1), insert Hv(1) to Q
12: while |Dsp| ≤ k do
13: extract Hv∗(i∗) from Q
14: compute Xv∗(i∗ + 1), insert Hv∗(i∗ + 1) to Q
15: Dsp := Dsp ∪ {Xv∗ (i∗) \Xv∗(i∗ − 1)}
16: return Gsp = Gsp(V,Dsp)

entries of X on-demand, i.e., the entry Xv(i) is only com-
puted when we must find out if the ith parent of v should
belong to the solution. Alternatively we could compute the
entire table X in advance, and then run phase 2 of Spine
with this as the input. This approach has the advantage
that the values Xv(1), Xv(2), . . . can be computed indepen-
dently of other vertices for each v ∈ V , hence Spine lends
itself to easy parallelization by arbitrarily partitioning V .

Setting the value of k. The size k of sparse network Gs

is given as input to problem 1. A natural question that
arises, then, is how to specify k in a principled manner,
so as to identify sparse networks that combine small size
with high log-likelihood. Following common model-selection
practice, one way to set k is via minimization of the Bayesian
Information Criterion (BIC).

BIC(Gs) = −2 logL(Gs) + k log(|A|) (12)

It is straightforward to modify our algorithms to use BIC
instead of log-likelihood, and return a sparse network Gs

that minimizes the BIC. Part of our experiments (Section 6)
is devoted to assessing Spine in terms of BIC.

6. EXPERIMENTS
In this section we present an evaluation of the performance

of Spine on real datasets.

6.1 Experimental framework

Datasets. We test our algorithms on samples extracted
from two different datasets. The first data source, referred
to as YMeme in the following, is a set of microblogging post-
ings in Yahoo! Meme.1 Nodes are users, actions correspond
to postings (typically photos) that users share through the
site, and arcs from a node u to a node v indicate that v fol-
lows u. The data source contains all posts in this platform
from 2008 to early 2010.

The second data source, referred to as MTrack in the fol-
lowing, is a set of phrases propagated over prominent online
news sites in March 2009, obtained by Meme Tracker [20].
Nodes are mostly news portals or news blogs and actions
correspond to phrases that are found by the Meme Tracker
algorithm to be repeated across several sites. In absence of
explicitly declared “follower-followee” relationships between

1http://meme.yahoo.com/



the sites, arcs from a node u to a node v indicate that the
website v linked to the website u during March 2009, and
thus v “follows” u. This dataset is publicly available.2

We used a snowball sampling procedure to obtain several
subsets from these data sources. In the case of YMeme,
we sampled a connected sub-graph of the social network
containing the users that participated in the most reposted
items. This yields very densely connected subgraphs. In the
case of MTrack, we sampled a set of highly reposted items
posted by the most active sites. This yields more loosely
connected subgraphs. A summary of the subsets we created
is shown in Table 1.

To estimate the probabilities associated with arcs, we use
the EM algorithm of [28] (Section 3). In interest of simplic-
ity, here we show results only for delay threshold ∆t = ∞
and study effects of ∆t in an extended version of the paper.
As explained in Section 3, ∆t = ∞ means that when node
v performs action α, then F+

α (v) contains all nodes followed
by v that performed α before v, and F−

α (v) is empty. On
the other hand, if v does not perform action α, then F+

α (v)
is empty, and F−

α (v) contains all nodes followed by v that
performed α and thus failed to influence v.

As a product of the maximum-likelihood estimation, it
may be that some arcs are associated with zero (0) influence
probability. The last column of table 1 reports the number
of arcs with positive probability after estimation terminates.

Table 1: Summary of datasets used.
Arcs Arcs

Dataset Actions Nodes input prob.> 0
YMeme-L 26 000 10776 1 247 711 432 613
YMeme-M 13 000 9 525 1 154 674 378 520
YMeme-S 5 000 2 573 466 284 73 396
MTrack-L 9 000 43 865 199 153 7 788
MTrack-M 120 35 304 110 759 1 417
MTrack-S 780 30 300 78 302 768

Alternative algorithms. While there is no established
baseline or benchmark, there are algorithms we can com-
pare with. On one extreme, we have OptimalSparse that
should be the most effective, at the expense of speed. We
experimented with OptimalSparse and discovered that its
running time is prohibitive for the size of datasets we use;
we thus omit its performance from our results. On the other
extreme, there are fast heuristic methods that may yield
good solutions. One such method is SortByProbability

that sorts the arcs inD by decreasing probability (we consid-
ered a variant that sort arcs by decreasing number of actions
traversing each arc, which yields worse results than Sort-

ByProbability and is thus omitted). Finally, we consider
algorithm Random, that simply permutes all edges having a
non-zero probability. Please note that both heuristics use
Spine’s first phase as an initialization procedure.

Implementation. All algorithms are implemented in Java
using the COLT library implementation of sparse matrices
and the Fastutils library for type-specific maps and collec-
tions.34 Our experiments are performed on a single Dual-

2http://snap.stanford.edu/data/memetracker9.html
3http://acs.lbl.gov/software/colt/
4http://fastutil.dsi.unimi.it/
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Figure 4: Log-likelihood vs fraction of non-zero-
probability arcs.

Core 2530MHz Intel processor and using less than 10GBs of
memory for the largest datasets.

For efficiency reasons we create F+
α (v) and F−

α (v) at ini-
tialization and keep them in memory to quickly compute the
log-likelihood function. Most processing time during sparsi-
fication is spent accessing these data structures to compute
the likelihood for a subset of the edges incident to a node.

6.2 Results
We execute the different sparsification algorithms and

measure log-likelihood at different levels of k (Figure 4).
The plots in Figure 4 demonstrate that Spine obtains

sparse graphs of high or even maximum likelihood with a
fraction of the total network size. For instance, we observe
that for the YMeme-L dataset, the initialization procedure
produces a non-zero-likelihood solution at 17% of non-zero-
probability arcs – that’s about 90 000 arcs, i.e., 7% the to-
tal number of arcs. Then, Spine achieves maximum log-
likelihood at 60% of non-zero arcs – that’s about 250 000
arcs, i.e., 20% of the total number of arcs. (Note that we
know Spine achieves maximum likelihood for that number
of arcs, because the corresponding likelihood value remains
at that level for larger values of k and is equal to the likeli-
hood of the original network). Similar observations hold for
all other datasets.



1.2E+07

1.4E+07

 0.17  0.6

B
IC

Fraction of arcs

YMeme-L

SPINE
SortByProb

Random

4.9E+05

5.1E+05

 0.42  0.69

B
IC

Fraction of arcs

MTrack-L

SPINE
SortByProb

Random
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Figure 6: Seed selection running time and influence
vs seed-set size, for sparse networks of different size
(shown as percentage of non-zero probability arcs).

Notice also that Spine constantly outperforms the two
heuristics, SortByProbability and Random, even though
they begin from the same basis, i.e., the same set of arcs
of non-zero likelihood. Among the two, SortByProbability
performs better, and in some cases achieves log-likelihood
close to that of Spine (e.g., MTrack-S, in Figure 4).

Moreover, Figure 5 displays the BIC scores for sparse
networks obtained from YMeme-L and MTrack-L (similar
plots were obtained for the rest of the datasets). We make
two observations. First, there is a clear minimum, suggest-
ing an optimal level of sparsification. Second, at that value
of k, Spine outperforms the two heuristics by a wide margin
in terms of likelihood. Specifically, for YMeme-L, Spine has
its best BIC score at 39% of non-zero arcs (13% of all arcs),
with log-likelihood that exceeds that of SortByProbability
by 3×105. Similarly, forMTrack-L, Spine has its best score
at 59% of non-zero arcs (2% of all arcs), with log-likelihood
that exceeds that of SortByProbability by 8× 102.

Running time. We experimented with Spine over many
large datasets and observed that its performance offers a vast
improvement over that of OptimalSparse, the running time
of which increases exponentially with the network size and
prohibits any use in practice. As a matter of fact, Optimal-
Sparse takes several days to complete for smaller datasets
than the ones we report here.

Under the current implementation, the two simpler heuris-
tics typically performed faster than Şpine. In YMeme-L, the
largest dataset of our experimental evaluation, the corre-
sponding time to achieve maximum likelihood was 55 min-
utes for Random and SortByProbability. Spine achieved
maximum likelihood (at 260, 000 arcs) in 3.5 hours and the

execution time for the first phase of the algorithm was about
15 minutes. For MTrack-S, the smallest dataset, the cor-
responding running time was less than 1 second. The time
needed by Spine to obtain a sparse network of maximum
likelihood is reported in Table 2 for all datasets.

Table 2: Spine – Time to reach max-likelihood
YMeme-L 3.5 hrs MTrack-L 10 sec
YMeme-M 35 min MTrack-M 1 sec
YMeme-S 1.5 min MTrack-S < 1 sec

7. APPLICATION: INFLUENCE

MAXIMIZATION
In Section 1 we claim that sparsification is a fundamen-

tal data-reduction operation with many applications. As a
proof of concept, we apply Spine as a pre-processing step
for the influence-maximization problem [18], showing that
computations on sparsified models give up little accuracy,
but yield significant improvements in terms of scalability.

Consider a social network G with arcs annotated with
probabilities of influence and assume the independent cas-
cade model of propagation. Consider also an arbitrary set
S of nodes in G (the “seed set”), and assume they are the
first to perform some action α at time t = 0. Then, the
spread of influence of that set is defined as the (expected)
total number of nodes that are eventually influenced to per-
form α as well. Given an integer s, the problem of influence
maximization consists in identifying a set S of cardinality
no more than s that has maximum spread of influence.

We apply Spine on the original network G of YMeme-S,
one of our larger datasets, to identify two sparse networks
G1, G2, of k1 = 25688, k2 = 38899 arcs, respectively. Net-
work G1 is the smallest network with non-zero likelihood
identified by Spine. Network G2 is the smallest network of
maximum likelihood.

For each of the aforementioned networks (G, G1, G2) we
run the influence maximization greedy algorithm of [18], de-
noted MaxInfl, to identify seed-sets of size s, for different
values of s. MaxInfl greedily selects seed nodes, every time
choosing the node that leads to the biggest increase in influ-
ence spread. To estimate influence spread, MaxInfl performs
Monte Carlo simulations of the independent cascade model.
In our experiments, we perform batches of 100 simulations
for every candidate seed set, and consider our estimate sta-
ble when it changes less than 10%. For each network and
seed-set size s, we measure (i) the running time of the algo-
rithm, and (ii) the influence of the identified seed set.

As shown in Figure 6, running MaxInfl over G2 returns
seed sets of almost optimal influence, at a considerable gain
in speed in comparison with running on G, even for small
seed sets. In addition, we observe that performing seed se-
lection over G1, the sparsest network, leads to large gains
in efficiency, while returning seed sets with high influence.
For example, when run over G, MaxInfl identifies a seed set
of size |S| = 10 and influence I0 = 290, in t0 = 54582
seconds (15 hours). On the other hand, when run over
G1, it identifies a seed set of the same size and influence
I1 = 0.88 · I0 = 255, in t1 = 0.09 · t0 = 5061 seconds (1.4
hours). As we can see, the gain from efficiency outweighs the
loss in quality, especially for large sizes of S where running
MaxInfl on G becomes excessively expensive.



8. CONCLUSIONS AND FUTURE WORK
We study the problem of sparsifying influence networks.

Given a social graph and a log of propagations, we select the
k arcs that best describe the propagations in terms of likeli-
hood. We show that the problem is inapproximable within
any multiplicative factor, and introduce Spine, a greedy al-
gorithm, to solve it efficiently.

Through experimental evaluation over real datasets, we
demonstrate that Spine identifies sparse sub-networks with
practically little compromise in quality. We demonstrate ex-
amples of such sparse subnetworks, and apply sparsification
as a pre-processing step to the influence maximization prob-
lem, showing that it provides significant gains in efficiency
at little loss of quality.

Given the decomposition of the problem and hence its
suitability to parallelization (see Section 5.2, ‘A note on
parallelization’), in our on-going work we are developing a
Hadoop implementation of Spine, which will allow to scale
to extremely large networks.

Reproducibility. Code implementing the Spine algo-
rithm, along with instructions to repeat the experiments
over the public MTrack data source, is available at
http://queens.db.toronto.edu/~mathiou//spine/.
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